Contents

Project Description... 2
Project Location... 3
Project Scope.. 4
Sustainable Design at the Wolk Center.................... 9
LEED-NC Rating System Checklist..........................20
Costs...23
Project Team...25
Photos...26
Learn More..27
Project Details...28
Sources..41

Appendix A: Full-time Equivalent Employees
Appendix B: Technical Assistance Study in Support of New Construction Program
Appendix C: Energy data tables
Appendix D: Memo regarding decision to pursue LEED certification

Appendix E: Tabular summary of first costs and life-cycle savings
Appendix F: Sample Thermal Comfort Survey
The Louis S. and Molly B. Wolk Center for Excellence in Nursing building at Monroe Community College has been awarded LEED-Silver Certification by the U.S. Green Building Council (USGBC). LEED stands for Leadership in Energy and Environmental Design, a third-party certification program and the nationally accepted benchmark for the design, construction and operation of high performance green buildings.

This new 22,800 SF addition to the MCC Brighton Campus is home to MCC’s nursing program and provides new classrooms, labs and faculty offices. SWBR Architects, the Architect-of-Record for the project, coordinated the project’s sustainable design efforts, working closely with MCC and the County of Monroe. Design for the facility started in Fall of 2006 and the Wolk Center officially opened in Fall of 2008.

In earning this LEED-Silver rating, MCC practiced careful management of stormwater in its site development through the establishment of a natural wet pond on the campus. The project team used many regional and recyclable materials in its construction and utilized an array of measures to improve indoor air quality for the occupants. The Wolk Center saves approximately 31% of the water used by a comparable facility through the installation of water-efficient fixture and can perform 18% better in terms of energy over a standard building’s energy usage.

MCC has integrated this building as a teaching tool within its curriculum and is currently putting the final touches on an educational display for students and visitors.

The project’s sustainable design investments could save the County of Monroe over $200,000 in Energy Costs for this building over the next twenty years.
The Wolk Center is located on the Brighton Campus of Monroe Community College in Rochester, New York. The building faces East Henrietta Road, New York State Route 15A. For directions or contact information, please see page 27.
Building 9 at Monroe Community College is the home of The Louis S. and Molly B. Wolk Center for Excellence in Nursing. Building 9 is an existing two-story building known as The Gleason Hall of Science and Technology. The Wolk Center is an addition to Building 9 is comprised of two stories totaling 22,880 gross square feet (GSF).

The first floor of the addition provides 11,440 GSF of nursing instructional space and includes a nursing center, patient simulator/tutorial lab, four nursing/medical/surgical/maternity labs, and storage. The second floor of the addition provides 11,440 GSF of classroom and office space.
Project Scope
Project Scope

Bed Lab

Class Lab
The Wolk Center
First Floor Plan
Not to Scale
The Wolk Center
Second Floor Plan
Not to Scale

Project Scope
Sustainable Design at the Wolk Center

The Louis S. & Molly B. Wolk Center for Excellence in Nursing is a sustainably-designed building and has earned LEED-Silver Certification through the U.S. Green Building Council (USGBC).

- The USGBC’s mission is to transform the way buildings and communities are designed, built and operated, enabling an environmentally and socially responsible, healthy and prosperous environment that improves the quality of life.
- LEED®, which stands for Leadership in Energy and Environmental Design, is a third-party Green Building Rating System and is the nationally accepted benchmark for the design, construction and operations of high performance green buildings.

The USGBC has four levels of LEED certification:
- LEED-Certified
- LEED-Silver
- LEED-Gold
- LEED-Platinum

The Wolk Center project was designed and constructed using the LEED for New Construction (LEED-NC) rating System, Version 2.2, and was the first of any County project to make this commitment.

Monroe County and MCC challenged the Design Team to produce a project that would earn, at a minimum basic LEED Certification from the USGBC. Collectively, the project team worked toward a goal of achieving the LEED-Silver level of Certification. The required documentation for certification was submitted to the USGBC in late February, 2009, and the project was awarded its certification on July 2, 2009.

This new 22,800 SF addition to the MCC Brighton Campus has replaced the College’s original nursing program classrooms, labs and faculty offices that were built in the 1960’s; and these new modular labs will allow for changes in technology, program, and teaching methods in the future, assuring a longer life-cycle for the facility.

First cost investments in Sustainable Design Strategies such as additional HVAC systems or high-efficiency lighting will be returned in approximately only three years. However, this up front investment can save the County of Monroe over $230,000 in Energy Costs over the next twenty years.

Key Results:
- Energy usage: 18.4% reduction in energy usage from a baseline building as defined by from ASHRAE Standard 90.1, 2004 Edition.
- The Wolk Center has increased controllability of HVAC systems, providing improved individual comfort for its occupants.
- 14.8% of the construction materials purchased for this project contain recycled content (exclusive of M/E/P equipment and specialty systems), reducing the demand and impacts from extracting and processing new materials.
- 16.3% of the construction materials purchased for this project contain regionally harvested and manufactured materials (exclusive of M/E/P equipment and specialty systems), supporting indigenous resources and reducing the environmental impacts resulting from transportation.
- Indoor Air Quality Management Plans and the specification of Low-VOC products - including paints, adhesives and carpet products - reduced air quality problems common to new construction in order to help sustain the comfort and well-being of construction workers and building occupants.
Sustainable Design at the Wolk Center

Sustainable Design

The Wolk Center building incorporates many economical and environmental strategies, each of which works with the others as a system to provide an improved, high-performance building.

The LEED Rating System for New Construction, LEED-NC, Version 2.2, is structured as a system of 7 required Prerequisites (PR) and 69 optional credits (Cr) over six different categories of environmental impact. These are:

- **Sustainable Sites (SS)**
 - 1 Prerequisite
 - 14 Credits
 - 14 Points

- **Water Efficiency (WE)**
 - 0 Prerequisites
 - 5 Credits
 - 5 Points

- **Energy & Atmosphere (EA)**
 - 3 Prerequisites
 - 6 Credits
 - 17 points

- **Materials & Resources (MR)**
 - 1 Prerequisite
 - 8 Credits
 - 13 Points

- **Indoor Environmental Quality (EQ)**
 - 2 Prerequisites
 - 15 Credits
 - 15 Points

- **Innovation in Design (ID)**
 - 0 Prerequisites
 - 5 Credits
 - 5 points

As noted above, each credit contains a specific number of points which can be achieved.

The final LEED-NC certification ratings are awarded according to the following scale:

- **Certification**
 - Silver: 26-32 points
 - Gold: 33-38 points
 - Platinum: 39-51 points
 - Gold: 52-69 points
Sustainable Site Design at the Wolk Center

The following sustainable design techniques and strategies were incorporated in the Wolk Center project:

- **SS PR 1 Construction Activity Pollution Prevention** MCC earned this prerequisite by following the standard practices required by New York State to manage erosion and runoff during construction.

- **SS Cr 1 Site Selection** This existing Campus site qualifies for this credit as it is not prime farmland, not previously undeveloped land whose elevation is lower than 5 feet above the elevation of the 100-year flood as defined by FEMA, is not previously undeveloped land within 50 feet of a water body, is not identified as a habitat for any endangered species, is not within 100 feet of a wetland, and is not acquired public parkland.

- **SS Cr 2 Development Density and Community Connectivity** MCC is in a location that meets the LEED qualifications for Community Connectivity. This category favors development near urban areas, and existing infrastructure - protecting greenfields, habitats and natural resources. The Wolk Center is connected with the existing built fabric of MCC and provides the opportunity to access many community businesses and services within a half-mile radius. Having a dense, adjacent residential development nearby also supports development at this site.

- **SS Cr 4.1 Alternative Transportation: Public Transportation Access** MCC’s Brighton Campus has excellent public transportation access. The campus is served by several public bus lines that bring students to and from the main campus entrance, lessening the pollution and land development impacts associated with automobile use.

- **SS Cr 4.2 Alternative Transportation: Bicycle Storage and Changing Rooms** MCC has terrific capability to accommodate bicyclists. The project has utilized the showers and changing facilities provided within the adjacent Building 10 at the College for cyclists that require them.

- **SS Cr 5.2 Site Development: Maximize Open Space** MCC has chosen to allot campus property equal to the footprint of the Wolk Center to be permanently dedicated as open space suitable for a natural habitat. The Wolk Building has addressed the criteria for this credit through the dedication of a naturally designed, existing area of “wet pond”, which also serves to provide a significant, natural, beautiful open space for the campus.

Designed according to the NYSDEC standards for a "wet pond" (P-2), the facility acts as a free form detention/retention pond. Its pool and marsh areas create suitable growing conditions for emergent vegetation, micro-terrains designed to provide stormwater pollutant removal opportunities and species habitats. The pool area is designed to be maintained through the dry season and an island within the pond adds to the potential habitats for wildlife at this site. Side slope gradients are minimal and vegetated. MCC has committed to preserving the pond in the future.
Sustainable Design at the Wolk Center

The following sustainable design techniques and strategies were incorporated in the Wolk Center project:

Sustainable Site Design

- **SS Cr 6.1 Stormwater Management: Quantity Control**
- **SS Cr 6.2 Stormwater Management: Quality Control**

MCC has designed an exceptional natural pond system to manage the quantity and quality of its stormwater for the Wolk Center and all of its Brighton Campus construction. This system filters stormwater, improving the quality of the water, and reduces the quantity of stormwater leaving the site, lessening the impacts to our municipal systems. While there was limited site design scope within this project, the stormwater management infrastructure and capacity already in place at MCC satisfied the LEED requirements this credit.

- **SS Cr 7.2 Heat Island Effect: Roof** The Wolk Center has installed a white roof system, or “Cool Roof”, to lessen the detrimental environmental impacts of “Urban Heat Island Effect” caused by dark roof surfaces.

Water Efficiency

The Wolk Center has earned 4 of 5 possible rating system points for Water Efficiency.

While many parts of the United States are currently finding water in short supply, Monroe County has a tremendous asset in its affordable, clean, municipal water system. Seeking to preserve this resource, the Wolk Center has invested in water-saving technologies.

- **WE Cr 1 Water Efficient Landscaping** No irrigation systems were installed as a part of this project.

- **WE Cr 3 Water Use Reduction** High-performance water fixtures were installed that will save one-third of the building’s annual water usage.
Sustainable Design at the Wolk Center

Energy & Atmosphere

The Wolk Center has earned 4 of 17 possible points in this category.

Buildings utilize approximately 37% of the energy and 68% of the electricity produced in the United States annually, according to the U.S. Department of Energy. The fossil fuel sources that provide energy impact the environment many adverse ways from extraction to transportation, refining and distribution. Reduction of demand for energy is an important step in reducing environmental impacts, and the better the energy performance for a building, the lower its operational costs. The Wolk Center has been designed to save roughly 18% of the energy used by a similar, baseline building.

EA PR 1 Fundamental Commissioning of the Building Energy Systems Though a specific return on investment at the Wolk Center cannot be determined, Commissioning verifies that a building is performing to the level to which it was designed. Even basic commissioning can provide significant benefits. In the long term, commissioning has been shown to have very strong improvements in system performance and reduced operating costs. Case studies have shown that commissioning frequently pays for itself in less than a 1-year period.

The Commissioning process included the following:

- Designating Commissioning Authority.
- Review of Owner’s Project Requirement (OPR) and Basis of Design (BOD).
- Commissioning documentation was created and OPR and BOD requirements were incorporated in construction documents.
- Commissioning plan was developed and implemented.
- Equipment installation was verified and its performance checked by the pre-functional test, and finally commissioned.
- A summary report of commissioning was completed.
- Commissioning design review was completed prior to mid construction.
- Contractor submittals were reviewed.
- System manual was created to help with understanding and operation of commissioned system.
- Requirements and completion of operators and building occupant’s training were confirmed.
- Building is pending a 10 month review of its operation and customer satisfaction.

EA PR 2 Minimum Energy Performance This prerequisite requires that the team establish the minimum level of energy efficiency for the proposed building and systems.

EA PR 3 Fundamental Refrigerant Management The Wolk Center has no CFC-based refrigerants in new base building HVAC&R systems and does not connect to any systems containing CFCs.
Sustainable Design at the Wolk Center

Energy & Atmosphere

- **EA Cr 1 Optimize Energy Performance** This classroom and office building will save 18.4% in energy annually through the sustainable design strategies it has incorporated. These include: Improved Levels of Building Envelope Insulation, High Performance Window Glazing, Exterior Solar Sunshades, High-Efficiency Lighting, Daylighting Harvesting Controls in Lounge Area, Occupancy Sensors to reduce HVAC use, and others.

The building utilizes external source for its heating and cooling. Building envelope was carefully planned and constructed with pressure barrier to avoid the air infiltration and heat loss through a skin of the building. HVAC system is equipped with Variable Speed Drives (VSD) to operate only at the required energy level. Siemens building control system is equipped with programming algorithms to provide energy efficient operation, including economizing. Occupancy sensors are integrated with VAV air terminals to minimize unnecessary load in response to occupancy changes in each area. High efficiency light fixtures are installed throughout the building and integrated with occupancy sensors control. System ventilation modes are adjusted based on monitoring of CO2 in dedicated spaces and common return air system. Building is served by VAV to apportion supply air in level required to thermally balance system according to prescribed temperature setpoints.

Featured Energy Strategies

- Strategy 1: Improved Levels of Building Envelope Insulation
- Strategy 2: High Performance Window Glazing
- Strategy 3: Exterior Solar Sunshades
- Strategy 4: High Albedo Roof
- Strategy 5: High efficiency Lighting
- Strategy 6: Daylighting Harvesting Controls in Lounge Area
- Strategy 7: Enthalpy Economizer on AHU-1
- Strategy 8: Discreet Air Temperature Reset
- Strategy 9: Occupancy Sensors for VAV Optimization
- Strategy 10: Premium Efficiency Motors

See *Appendix B* for detailed information on Energy Systems.

- **EA Cr 4 Enhanced Refrigerant Management** The project does not utilize refrigerants.
Sustainable Design at the Wolk Center

Materials & Resources

The Wolk Center has earned 3 of 13 possible points in this category.

Building materials choices are important in sustainable design due to the extensive network of extraction, processing and transportation steps required to process them. These efforts can lead to pollution, the destruction of natural habitats and the depletion of natural resources. LEED seeks to reduce environmental impacts through the reduction of waste, encouraging the selection of materials with recycled content, regional availability, and those that are rapidly renewable.

- **MR PR 1 Storage and Collection of Recyclables** The Wolk Center has a recycling program that allows its occupants to sort paper, cardboard, glass, and metal from waste materials, keeping recyclable products out of the waste stream.

- **MR CR 4 Recycled Content** 14.8% of the total materials cost for the project was comprised of recycled content. This increases demand for building products that incorporate recycled content materials, reducing the impacts resulting from extraction and processing of virgin materials.

- **MR CR 5 Regional Materials** 16.3% of the products used in this project were manufactured and harvested within 500 miles of the site. This supports regional businesses and reduces the costs and environmental impacts related to transportation.

- **MR CR 7 Certified Wood** 77% of the wood in this project is certified in accordance with Forest Stewardship Council Principles and Criteria. These are forestry practices established to ensure the long-term health of forests for timber production, wildlife habitat, clean air and water supplies, and climate stabilization as well as the long-term community employment that comes from stable forestry operations.
Indoor Environmental Quality

The Wolk Center has earned 12 of 15 possible rating system credits for Indoor Environmental Quality.

Americans spend 90% of their time indoors, where the U.S. Environmental Protection Agency reports that levels of pollutants run two to five times – and occasionally 100 times - higher than outdoor levels. The use of better products and practices helps to prevent indoor environmental quality problems. These methods include specifying materials that release fewer and less harmful chemical compounds, protecting materials and air handling systems during construction to reduce exposure to contaminants, and increasing ratios of filtered outside air and ventilation rates as well as the use of sensors and controls to maintain air quality.

- **EQ PR 1: Minimum IAQ Performance**
 Establish minimum indoor air quality (IAQ) performance to enhance indoor air quality in buildings and contribute to the comfort and well-being of the occupants.

- **EQ PR 2: Environmental Tobacco Smoke (ETS) Control**
 This minimizes exposure of building occupants, indoor surfaces, and ventilation air distribution systems to Environmental Tobacco Smoke (ETS). MCC’s current no-smoking policy extends beyond that of New York State to meet the requirements as defined in this prerequisite.

- **EQ CR 1: Outdoor Air Delivery Monitoring**
 Permanent monitoring systems are installed that provide feedback on ventilation system performance to ensure that the system maintains design minimum ventilation requirements. All monitoring equipment is configured to generate an alarm when the conditions vary by 10% or more from the setpoint, via either a building automation system alarm to the building operator.

- **EQ CR 3.1: Construction IAQ Management Plan: During Construction**
- **EQ CR 3.2: Construction IAQ Management Plan: Before Occupancy**
 Indoor Air Quality (IAQ) Management Plans were developed and implemented for both the construction phase and the pre-occupancy phase of the building. These included plans to meet or exceed IAQ Guidelines for Occupied Buildings under Construction, protecting stored and installed absorptive construction materials from moisture damage, and the application of superior air filtration media. This reduced dust and particulates brought into the construction site, managed the quality of materials stored on the site and ensured a cleaner ventilation system once the building systems were in operation.

- **EQ CR 4.1: Low-Emitting Materials: Adhesives & Sealants**
- **EQ CR 4.2: Low-Emitting Materials: Paints & Coatings**
- **EQ CR 4.3: Low-Emitting Materials: Carpet Systems**
- **EQ CR 4.4: Low-Emitting Materials: Composite Wood & Agrifiber Products**
 Volatile Organic Compounds (VOCs) are emitted as gases from certain products and are particularly noticeable in new construction. They can be odorous and irritating, but some of these airborne chemicals may have also produce short- and long-term adverse health affects. In the design of the Wolk Center, low-VOC paints, adhesives, carpet, and composite wood products were specified with the intent to prevent indoor air quality problems from arising. This worked in conjunction with the IAQ management plans noted above in improving the air quality in the new building for its occupants.
Indoor Environmental Quality

EQ CR 5: Indoor Chemical & Pollutant Source Control
Permanent Entryway systems are installed at the main entrance to the facility. This system allows for drainage and cleaning underneath, helping to capture dirt and particulates at the entrance to the building where it is directly connected to the outdoors. Walk-off mats are provided at a secondary entrance. Per the USGBC, these are required to be maintained weekly, but are actually maintained daily through MCC’s maintenance program. Where hazardous gases or chemicals may be present or used, such as custodial areas, each space is exhausted sufficiently to create negative pressure with respect to adjacent spaces with the doors to the room closed. Self-closing doors and deck to deck partitions are provided.

EQ CR 6.1: Controllability of Systems: Lighting
Individual lighting controls are provided for 95.2% of the building occupants to enable adjustments to suit individual task needs and preferences. The Wolk Center was designed for flexibility and its rooms may serve different users and different programmatic needs. The Wolk Center accommodates this through flexibility in its lighting design. Controls are located near entry doors and near teaching stations and workstations that provide multi-level (0, 33, 67 and 100% levels) switching and occupancy sensor control.

EQ CR 6.2: Controllability of Systems: Thermal Comfort
The Wolk Center has provided controls and systems to give the building occupants a larger degree of individual control over the HVAC system. Each office has a separate control point, sensor and VAV box for individual comfort. Multi-occupant spaces also have a control and temperature sensor. Each temperature sensor senses the space temperature and allows the occupant to adjust for their comfort. Occupancy sensor control will increase the space control levels to an occupied level when someone is sensed in the room. The CO2 sensors will increase the volume of air into a space when the CO2 level is above a preset limit.

EQ CR 7.1: Thermal Comfort: Design
The building thermal comfort conditions follow those recommended by ASHRAE 55-2004. The HVAC system is a variable air volume with hot water reheat system sized to maintain these conditions and to provide individual space control. The building control system has temperature sensors and programming to maintain the intended conditions. All offices, classrooms, conference rooms and meeting spaces will have individual area control.
Indoor Environmental Quality

EQ 7.2: Thermal Comfort: Verification

MCC will issue a thermal comfort survey to the building occupants after a year of occupancy. A custom method for measurement of customer satisfaction was developed (see sample survey in Appendix F). If more than 20% of the occupants are dissatisfied with the thermal conditions of the spaces then MCC will develop a plan to make improvements for occupant comfort. Before improvements are made the thermal conditions in the areas under review will be measured as described in ASHRAE 55-2004. This will help determine if the spaces are being maintained to the design parameters. This project has separate controls in individual offices which will make tailoring of spaces to the individuals much easier.

If actions are needed to improve the thermal conditions within the building the occupant concerns will be reviewed, commonalities between complaints will be compiled and corrective action will be developed. Once the corrective action is implemented a period of time will be allowed before another occupant questionnaire is resent. This will determine if the actions taken have improved the building thermal conditions so that less than 20% of the occupants experience thermal discomfort. Potential corrective actions include widening of allowable thermal setting on individual space controls, relocation of supply diffusers within spaces, relocation of thermal sensors within spaces, increasing the air flow to a space by VAV box settings or even increasing duct sizes. Actual actions taken will be determined by the occupant comments.
Sustainable Design at the Wolk Center

Innovation in Design

The Wolk Center has earned 3 of 5 potential points in this category.

Sustainable Design strategies and measures are constantly evolving improving. The purpose of this category is to recognize projects for innovative building features and sustainable building knowledge. Occasionally a strategy results in building performance that greatly exceeds what is required by an existing LEED Credit. Other strategies may not be addressed by any other LEED prerequisite or Credit but warrant consideration for their sustainability benefits. LEED is also most effectively implemented in an integrated process and this category addresses the use of a LEED Accredited professional in that process.

- **ID Cr 1.1 Sustainable Design Educational Opportunities** The Wolk Center has provided public educational display regarding the sustainable design of the Wolk Center and a companion, web-based educational display. The College offers guided tours and has developed this case study document as a series of educational tools about sustainable design.

- **ID Cr 1.2 The Building as a Teaching Tool** MCC is using the Wolk Center itself as a teaching tool, integrating the building into its campus curriculum, so that students can experience a green building and study its performance and systems design. Please see the curriculum document in Appendix G.

- **ID Cr 2 LEED Accredited Professional** This project has several LEED Accredited Professionals as part of the Architectural and M/E/P design team.
This project has achieved LEED-Silver Certification, earning a total of 35 points in the LEED Rating System. The following checklist represents the full range of credits and the specific points achieved by in the Wolk Center project.

LEED for New Construction v2.2 Registered Project Checklist

<table>
<thead>
<tr>
<th>Sustainable Sites</th>
<th>14 Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes ? No</td>
<td>9 5</td>
</tr>
</tbody>
</table>

- Prereq 1: Construction Activity Pollution Prevention
- Credit 1: Site Selection
- Credit 2: Development Density & Community Connectivity
- Credit 3: Brownfield Redevelopment
- Credit 4.1: Alternative Transportation, Public Transportation Access
- Credit 4.2: Alternative Transportation, Bicycle Storage & Changing Rooms
- Credit 4.3: Alternative Transportation, Low-Emitting & Fuel-Efficient Vehicles
- Credit 4.4: Alternative Transportation, Parking Capacity
- Credit 5.1: Site Development, Protect of Restore Habitat
- Credit 5.2: Site Development, Maximize Open Space
- Credit 6.1: Stormwater Design, Quantity Control
- Credit 6.2: Stormwater Design, Quality Control
- Credit 7.1: Heat Island Effect, Non-Roof
- Credit 7.2: Heat Island Effect, Roof
- Credit 8: Light Pollution Reduction

<table>
<thead>
<tr>
<th>Water Efficiency</th>
<th>5 Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes ? No</td>
<td>4 1</td>
</tr>
</tbody>
</table>

- Credit 1.1: Water Efficient Landscaping, Reduce by 50%
- Credit 1.2: Water Efficient Landscaping, No Potable Use or No Irrigation
- Credit 2: Innovative Wastewater Technologies
- Credit 3.1: Water Use Reduction, 20% Reduction
- Credit 3.2: Water Use Reduction, 30% Reduction

continued...
LEED-NC Rating System Checklist

Energy & Atmosphere

<table>
<thead>
<tr>
<th>Credit</th>
<th>Description</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Optimize Energy Performance</td>
<td>1 to 10</td>
</tr>
<tr>
<td></td>
<td>10.5% New Buildings or 3.5% Existing Building Renovations</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>14% New Buildings or 7% Existing Building Renovations</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>17.5% New Buildings or 10.5% Existing Building Renovations</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>21% New Buildings or 14% Existing Building Renovations</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>24.5% New Buildings or 17.5% Existing Building Renovations</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>28% New Buildings or 21% Existing Building Renovations</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>31.5% New Buildings or 24.5% Existing Building Renovations</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>35% New Buildings or 28% Existing Building Renovations</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>38.5% New Buildings or 31.5% Existing Building Renovations</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>42% New Buildings or 35% Existing Building Renovations</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>On-Site Renewable Energy</td>
<td>1 to 3</td>
</tr>
<tr>
<td></td>
<td>2.5% Renewable Energy</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>7.5% Renewable Energy</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>12.5% Renewable Energy</td>
<td>3</td>
</tr>
</tbody>
</table>

Materials & Resources

<table>
<thead>
<tr>
<th>Credit</th>
<th>Description</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Storage & Collection of Recyclables</td>
<td>Required</td>
</tr>
<tr>
<td>1</td>
<td>Building Reuse, Maintain 75% of Existing Walls, Floors & Roof</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Building Reuse, Maintain 100% of Existing Walls, Floors & Roof</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Building Reuse, Maintain 50% of Interior Non-Structural Elements</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Construction Waste Management, Divert 50% from Disposal</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Construction Waste Management, Divert 75% from Disposal</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Materials Reuse, 5%</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Materials Reuse, 10%</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Recycled Content, 10% (post-consumer + ½ pre-consumer)</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Recycled Content, 20% (post-consumer + ½ pre-consumer)</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Regional Materials, 10% Extracted, Processed & Manufactured Regio</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Regional Materials, 20% Extracted, Processed & Manufactured Regio</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Rapidly Renewable Materials</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Certified Wood</td>
<td>1</td>
</tr>
</tbody>
</table>

continued...
LEED-NC Rating System Checklist

Indoor Environmental Quality

<table>
<thead>
<tr>
<th>Credit</th>
<th>Description</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Minimum IAQ Performance</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Environmental Tobacco Smoke (ETS) Control</td>
<td>1</td>
</tr>
<tr>
<td>3.1</td>
<td>Construction IAQ Management Plan, During Construction</td>
<td>1</td>
</tr>
<tr>
<td>3.2</td>
<td>Construction IAQ Management Plan, Before Occupancy</td>
<td>1</td>
</tr>
<tr>
<td>4.1</td>
<td>Low-Emitting Materials, Adhesives & Sealants</td>
<td>1</td>
</tr>
<tr>
<td>4.2</td>
<td>Low-Emitting Materials, Paints & Coatings</td>
<td>1</td>
</tr>
<tr>
<td>4.3</td>
<td>Low-Emitting Materials, Carpet Systems</td>
<td>1</td>
</tr>
<tr>
<td>4.4</td>
<td>Low-Emitting Materials, Composite Wood & Agrifiber Products</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Indoor Chemical & Pollutant Source Control</td>
<td>1</td>
</tr>
<tr>
<td>6.1</td>
<td>Controllability of Systems, Lighting</td>
<td>1</td>
</tr>
<tr>
<td>6.2</td>
<td>Controllability of Systems, Thermal Comfort</td>
<td>1</td>
</tr>
<tr>
<td>7.1</td>
<td>Thermal Comfort, Design</td>
<td>1</td>
</tr>
<tr>
<td>7.2</td>
<td>Thermal Comfort, Verification</td>
<td>1</td>
</tr>
<tr>
<td>8.1</td>
<td>Daylight & Views, Daylight 75% of Spaces</td>
<td>1</td>
</tr>
<tr>
<td>8.2</td>
<td>Daylight & Views, Views for 90% of Spaces</td>
<td>1</td>
</tr>
</tbody>
</table>

Innovation & Design Process

<table>
<thead>
<tr>
<th>Credit</th>
<th>Description</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Innovation in Design: Educational Opportunities</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Innovation in Design: Building as a Teaching Tool</td>
<td>1</td>
</tr>
<tr>
<td>1.3</td>
<td>Innovation in Design: Provide Specific Title</td>
<td>1</td>
</tr>
<tr>
<td>1.4</td>
<td>Innovation in Design: Provide Specific Title</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>LEED<sup>®</sup> Accredited Professional</td>
<td>1</td>
</tr>
</tbody>
</table>

Project Totals (pre-certification estimates)

Costs

Project Cost

Project cost not including site work, furniture, fit-out and equipment (FFE): $5,624,000

Estimated Design Fees, includes LEED fees noted below and other “soft” project costs: $1,386,000

Estimated furniture, fit-out and equipment (FFE) costs: $398,000

TOTAL: $7,408,000

Cost and Payback Description

Design
Design Fees toward LEED measures, documentation & certification: $62,500

Construction
Estimated Incremental Costs for Energy Efficiency Measures only: $53,067
Estimated additional Construction Costs for LEED measures: $28,314
Total Construction Costs related to LEED: $81,381

Subtotal, Additional First Costs related LEED: $143,881

Incentives
NYSERDA incentive value if all measures in Table 1-1 are implemented: (-$15,841)

Total, Additional First Costs related LEED, less incentives: $128,040

Estimated annual savings from green and sustainable technologies, strategies and design: $11,622
(Extrapolated 20-year life cycle energy savings from sustainable strategies (no escalation): $232,440)

Simple Payback Period (all fees and costs / annual savings): 11 years

First Cost Design fees as a percentage of project cost: 0.84%
First Cost Construction fees as a percentage of project cost: 1.10%
All investments related to LEED, less incentives, as a percentage of total project cost: 1.73%
Below is a table summarizing first costs and paybacks for a range of sustainable strategies considered for the building*. Energy Savings and the recommended incentives are included.

It is valuable to note that while these items below are strategies that enhance a building’s energy performance beyond that of a building designed to meet the prescribed code. Some of these items below are elevated standards of practice that the County and MCC had desired independent of the concern for the Wolk Center as a LEED building.

It is also important to understand that, while each item is documented independently below, these items act together - as a system - in providing a high-performance building. Were one item to be singled out and deleted from the project for its higher initial cost or its independent simple payback period, the projects overall performance would be impacted.

For example, the cost of added building envelope insulation and its lengthy payback period of nearly 8 years may not be seen independently as a sound investment compared to High-Performance Window Glazing, but it contributes meaningfully to the building’s overall performance and without that one energy efficiency measure, the building’s systems and the other energy efficiency measures may not be as effective.

Together, the effective payback period on these investments is only 3.2 years, after which these components continue to provide savings to the County and the College.

Table 1-1: Whole Building Design Approach Analysis Results

<table>
<thead>
<tr>
<th>EEM</th>
<th>Project Measure Description</th>
<th>Annual Energy Reduction (kWh)</th>
<th>Summer Peak Demand Reduction (kW)</th>
<th>Winter Peak Demand Reduction (kW)</th>
<th>Annual Natural Gas Savings (Therm)</th>
<th>Annual Electric Energy Cost Savings</th>
<th>Annual Natural Gas Cost Savings</th>
<th>Total Annual Energy Cost Savings</th>
<th>Percent Regained Energy Improvement over Code</th>
<th>Estimated Incremental Cost</th>
<th>Simple Payback Period (years)</th>
<th>Incentive</th>
<th>Customer Lifetime Payback Period (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td>Design Package</td>
<td>52,662</td>
<td>16.4</td>
<td>11.3</td>
<td>4,435</td>
<td>$7,098</td>
<td>$4,524</td>
<td>$11,622</td>
<td>25.1%</td>
<td>$53,067</td>
<td>4.57</td>
<td>$15,841</td>
<td>3.20</td>
</tr>
<tr>
<td>1</td>
<td>Improved Levels of Building Envelope Insulation</td>
<td>2,942</td>
<td>1.7</td>
<td>-0.2</td>
<td>1,421</td>
<td>$336</td>
<td>$1,439</td>
<td>$1,778</td>
<td>4.8%</td>
<td>$14,905</td>
<td>8.39</td>
<td>$1,007</td>
<td>7.82</td>
</tr>
<tr>
<td>2</td>
<td>High-Performance Window Glazing</td>
<td>4,313</td>
<td>1.8</td>
<td>-0.2</td>
<td>1,826</td>
<td>$635</td>
<td>$606</td>
<td>$3,361</td>
<td>3.6%</td>
<td>$4,095</td>
<td>2.97</td>
<td>$1,195</td>
<td>2.12</td>
</tr>
<tr>
<td>3</td>
<td>Exterior Solar Sunshades</td>
<td>217</td>
<td>0.2</td>
<td>0.0</td>
<td>-22</td>
<td>$32</td>
<td>$22</td>
<td>$10</td>
<td>0.0%</td>
<td>$4,400</td>
<td>NA</td>
<td>$100</td>
<td>NA</td>
</tr>
<tr>
<td>4</td>
<td>High Albedo Roof</td>
<td>566</td>
<td>0.7</td>
<td>0.0</td>
<td>-85</td>
<td>$155</td>
<td>$286</td>
<td>$17</td>
<td>0.0%</td>
<td>$4,560</td>
<td>NA</td>
<td>$320</td>
<td>NA</td>
</tr>
<tr>
<td>5</td>
<td>High Efficiency Lighting</td>
<td>31,621</td>
<td>13.3</td>
<td>10.1</td>
<td>-424</td>
<td>$4,692</td>
<td>-$420</td>
<td>$4,272</td>
<td>10.6%</td>
<td>$19,500</td>
<td>4.65</td>
<td>$9,091</td>
<td>2.44</td>
</tr>
<tr>
<td>6</td>
<td>Daylight Harvesting Controls in Lounge Area</td>
<td>1,097</td>
<td>0.9</td>
<td>0.7</td>
<td>-16</td>
<td>$154</td>
<td>-$17</td>
<td>$177</td>
<td>0.5%</td>
<td>$1,500</td>
<td>8.47</td>
<td>$458</td>
<td>5.63</td>
</tr>
<tr>
<td>7</td>
<td>Enthalpy Economizer on AHU-1</td>
<td>260</td>
<td>0.0</td>
<td>0.0</td>
<td>2</td>
<td>$30</td>
<td>$2</td>
<td>$35</td>
<td>0.1%</td>
<td>$705</td>
<td>20.17</td>
<td>$41</td>
<td>18.95</td>
</tr>
<tr>
<td>8</td>
<td>Discharge Air Temperature Reset</td>
<td>10,135</td>
<td>4.6</td>
<td>0.1</td>
<td>3,195</td>
<td>$1,681</td>
<td>$3,276</td>
<td>$4,557</td>
<td>12.1%</td>
<td>$400</td>
<td>0.66</td>
<td>$3,031</td>
<td>0.00</td>
</tr>
<tr>
<td>9</td>
<td>Occupancy Sensors for VAV Optimization</td>
<td>1,325</td>
<td>1.0</td>
<td>-1.1</td>
<td>96</td>
<td>$142</td>
<td>$107</td>
<td>$249</td>
<td>0.7%</td>
<td>$2,275</td>
<td>9.14</td>
<td>$635</td>
<td>5.60</td>
</tr>
<tr>
<td>10</td>
<td>Premium Efficiency Motors</td>
<td>560</td>
<td>0.1</td>
<td>0.1</td>
<td>-2</td>
<td>$70</td>
<td>-$5</td>
<td>$65</td>
<td>0.2%</td>
<td>$722</td>
<td>10.75</td>
<td>$114</td>
<td>9.06</td>
</tr>
</tbody>
</table>

* This data is excerpted of the Technical Assistance Study in Support of New Construction Program completed by SAIC for Monroe Community College, Revised April 2008.
Project Team

Owners
Monroe County
50 West Main Street, suite 7100
Rochester NY 14614
tel.: 585.760.7541
fax: 585.324.1222

Monroe Community College
Department of Facilities
Building 21, Room 106
Brighton Campus
1000 East Henrietta Road
Rochester, NY 14623
tel.: 585.292.2000

Architect, Structural, Interiors,
Project Management, LEED Consultant:
SWBR Architects
387 East Main Street
Rochester, New York 14604-2197
tel: 585.232.8300
fax: 585.232.9221

Mechanical/Electrical/Plumbing Engineer
Commissioning Agent:
M/E Engineering, P.C.
150 North Chestnut Street
Rochester, NY 14604
tel.: 585.288.5590
fax: 585.288.0233

Civil Engineer:
Parrone Engineering
349 W. Commercial Street
Suite 3200
East Rochester, NY 14445
tel: 585.586.0200
fax: 585.586.6752

Geotechnical Engineering:
Foundation Design, P.C.
335 Colfax Street
Rochester, NY 14606
Phone : 585.458.0824
Fax : 585.458.3323

Energy Modeling Consultant:
SAIC
6314 Fly Road
East Syracuse, NY 13057
tel: 315.437.1869
fax: 315.437.1866

Construction Manager:
The Pike Company
One Circle Street
Rochester, New York 14607
tel.: 800.271.PIKE
fax.: 585.271.3101

General Contractor:
LeChase Construction
300 Trolley Blvd.
Rochester NY, 14606
tel.: 585.254.3510
fax.:585.254.3871

NYSERDA Outreach Project Consultant:
Sustainable Performance Consulting, Inc.
807 Ridge Road
Suite 206
Webster, NY 14580
tel.: 585.671.8110
fax: 585.671.8121

Programming Consultant:
Scott Blackwell Page
244 Fifth Avenue, 7th Floor
New York, New York 10001

Environmental Engineering:
Lu Engineers
2230 Penfield Road
Penfield, New York 14526-1922
tel.: 585.377.1450
fax: 585.377.1266
Photos

Project file information

MCC is in the process of developing a web site and is posting resources regarding the Wolk Center building and other sustainable efforts and initiatives. It can be found at: http://www.monroecc.edu/.
Visiting options

Guided tours are available. For more information and to arrange a tour, contact MCC at:

Monroe Community College
Brighton Campus
1000 East Henrietta Road
Rochester, New York 14623
Phone: (585) 292-2000

Directions:

To reach the MCC Brighton Campus from:
The West (Buffalo):
Take Thruway 90 east to exit 46; take 390 north to exit 16, the second East Henrietta Rd. (Rt. 15A) exit; turn left and continue south on 15A for about 1/2 mile to the main campus entrance.

The East (Syracuse): Take Thruway 90 west to exit 46 and proceed as above.

South (Geneseo): Take 390 north to exit 16 - the **second** East Henrietta Road exit and proceed as above.

Brockport/Spencerport: Take Route 531 east to 490 east and then to 390 south; take exit 16B (East Henrietta Rd. - Rt. 15A); turn right and proceed for about 1/2 mile to the main campus.

Please consult the http://www.monroecc.edu/ website to find the latest campus maps;

The information provided in this map is valid as of: December 2008 and can be found at: http://www.monroecc.edu/webdbs/WebMP.nsf/CampusMaps?OpenForm&BrMap1
FULL PROGRAM DESCRIPTION

The Monroe Community College Louis S. and Molly B. Wolk Center for Excellence in Nursing project entails an expansion of the existing Nursing program (8,540 Net Assignable Square Feet [NASF]) by about 2,300 NASF. The existing nursing program was split between Bldg 8 (offices) and Bldg 9 (instructional spaces) on MCC Brighton campus. Given the existing structural grid of 22’x22’ and shortage of space in existing buildings, the College was able to obtain a donation from the Wolk family with matching funds from NY State and were able to pursue an addition to Bldg 9 (vintage 1965) in order to consolidate the expanded Nursing program. In addition to the Nursing program, the addition is intended to contain 2 “smart” (or high-technology) classrooms for general use.

The program for the project was developed by programming consultant Scott B Page and the location for the addition was identified by the Master Plan. The development of the selected Option 1 into a Schematic Design included the creation of a structural framing grid, the verification of all spaces with programmed sizes and preliminary coordination with mechanical and plumbing systems. The sub-dividable class labs on the second floor have been configured such that entries into each class lab are from within the nursing suite. Also, all corridors (primary – public circulation & secondary – nursing program circulation) have kept consistently at 8’-0” minimum width as compared to 8’-0” for primary and 6’-0” for secondary circulation. As a result of these revisions, the building envelope presented has a total area (both floors) of 24,400 square feet. Programmed areas for all spaces have been met however at a much higher grossing factor.

The stair and elevator have been separated in order to mitigate the “pinch point” created between the addition and Building 8. The Second Floor plans have been configured to maximize the number of offices with windows.

The two-story addition is proposed to be taller than the existing high roof of building 9 due to the required plenum space for mechanical systems (which is currently inadequate on the existing second floor). As a result, strategies to mitigate snow drift onto the existing roof will be analyzed.
The entrance to the addition is designed as a taller storefront for emphasis given the small scale of the addition relative to the overall West façade of the Brighton campus. The second floor of the entrance would have the ability to look into the vestibule. This also provides adequate mass to create a strong presence and signage opportunity at the entrance.

The materials for the building are primarily brick (to match existing campus brick), aluminum windows & storefront system and some metal panels for accent.

In order to mitigate the solar radiation on the south facing windows, limited sun shading is being considered. The sun shading also allows to create some architectural effect with light and shadows, while improving interior comfort from reduced heat gain and glare.

Due to the scale of the addition, a fair portion of the existing west facade of building 9 would be visible. Given the poor condition of the concrete and the relatively bland existing facade, the existing facade should be cleaned and painted.

Key Project Design Objectives

- Provide flexible & appropriate facilities within MCC standards and goals & objectives defined in the Master Plan.
- Review options for direction of expansion and maximize additional program space through combination of new construction and renovations.
- Improve proximities within the Nursing program
- Maintain and improve horizontal & vertical circulation
- Improve accessibility (circulation & toilets) & way-finding
- Pursue a strategy to improve electrical and mechanical infrastructure
- Capitalize on project site location to enhance the West façade of the campus.
- Pursue strategies to stay within the Phase I budget of $7 million.

Design Criteria

- Organizing elements – Building 9 major corridors, instructional spaces and faculty offices
- Creating collaborative, shared and flexible space.
- Achieving micro & macro level relationships
- Building efficiency – pursuing strategies to reduce the grossing factor (ratio total building area to net usable space) for the addition to ensure best usage of available funds
- Incremental strategy for mechanical systems – improving efficiency and flexibility
- Incremental strategy for hazardous material abatement in existing building 9
- Provision of adequate storage for equipment and supplies
- Image & character of the built environment – enhancing West side of Brighton Campus
- Outdoor activity spaces
The Nursing Program has grown recently as a result of grant monies however the program has “roamed” somewhat within the facility over the past few years. One goal is to utilize technology to provide flexible, dedicated labs for several of the nursing courses, incorporating modular design. These will be assigned to the Nursing Program exclusively. Adaptability of these rooms is a high priority. Other labs may be simpler and more like classrooms, so that they may be used as general classrooms for other programs when not needed for Nursing courses.

The program is based on an analysis of classroom contact hours. There are a set number of clinical spaces required by the Nursing program:

- Nursing space consists of Lab Spaces, Classrooms, Faculty Offices and a Learning Center. From existing fall 2005 there is a 2,200 deficit from projected Fall 2008 need. The program goal is to design to a 67% efficiency factor.
- In addition, two general use classrooms and a student lounge space are planned.
- The gross square footage will include building support (stairs, toilets, corridors, mechanical and maintenance spaces) and structural wall displacement.
- Many of the teaching faculty are adjunct and come from off campus. Offices will be provided for full-time faculty and administration which equals 3,000 net SF.
- 6-Nursing Classrooms (30 Stations) are planned to be modular to provide flexibility from year to year. Each will adjoin service area for storage and preparation. Bed lab (8 Stations) includes wings of space for the bed treatment area. The Nursing Fundamentals Lab (24 Stations).
 - Modular labs will allow for change in technology and program.
 - All rooms will be “smart” classrooms with suitable infrastructure.
 - Possibility of having simulator Labs with specialty 3-D imaging in future.
Site Design
The Wolk Center Building addition consists of a 2 story-22,000 +/- square foot building addition off the west end of Building #9. The area to be occupied by the proposed building is a grass area with trees and concrete sidewalks. The concrete sidewalks will be relocated to better-proportion students’ access between the new west entrance to the Wolk Center and the existing access to Building #9 which will be maintained.

Although there is no impact to any vehicular circulation, a small modification to the loading dock access off the south face of Building #9 is proposed. This will allow access to the loading dock to be from parking lot Q via an asphalt access drive rather than a concrete sidewalk presently being utilized by pedestrians and vehicles.

The following sections outline the site related activities associated with the construction of the Wolk Center.

Pedestrian Access
The existing pedestrian walkways, which consist of concrete sidewalks, will be removed from within and around the proposed building footprint. New concrete sidewalks (8 foot wide minimum) will be installed from the main north / south sidewalk adjacent to parking lots J and K to the new Wolk Center. A sidewalk will also be installed adjacent to the west and south walls of the new building to allow pedestrians from parking lot Q to access building #9 or proceed north to the entrance of Building #8. It is anticipated that all sidewalks will be installed at a grade less than 5% so no ramps would be required.

Grading/Topography
The existing topography is presently being obtained. It is anticipated that the new first floor elevation of the new building will match existing. Grade presently slopes up from Building #9 to parking lot K. A low spot will be created to intercept drainage from the remaining grass area. Earthwork for this building addition will be minimal barring non-suitable material within the building footprint.

Water service
There is an existing water main on the Westside of the proposed building addition. A new 4-inch ductile iron domestic water service and a 6-inch fire service will be installed to the Wolk Center addition. Back flow prevention will be provided within the new building immediately upon where the service enters the building.

Storm Sewer
An existing 12-inch storm sewer will be relocated from within the new building’s footprint. Wyes will be provided for the 4-inch and 6-inch laterals to pick up roof leaders. The size of the storm sewer will have to be checked for proposed capacity. The building additions increase in storm water flows should not require an upgrade of the existing storm sewer downstream.

Sanitary Sewers
There are no sanitary sewer mains in close proximity to the proposed building addition. A connection to the existing sanitary sewer within Building #9 is being investigated for feasibility of tie-in.
Electric
There is an existing electrical service from Building #8 that will be within the proposed building footprint. This line will have to be relocated from under the proposed building and located to the west. In addition, a new electrical feed is being proposed (presently proposed within existing duct bank) to service the Wolk Center as well as a future field house.

Gas Main
A 4-inch gas main will need to be relocated to the west out of the proposed building footprint. There is an option of running the gas main through the existing Building 9 for cost saving and future ease of access. The main shall be sized to include the proposed Field House Addition.

Landscaping
There are a number of 3-6 inch crabapple and ornamental type trees along with a 10-inch ash that need to be removed. It is our understanding that none of these trees are donor trees. A new landscape plan is being developed to match the rest of the campus landscape and appearance. It should be noted that the courtyard created between Building #8 and proposed Building #9, may not support establishment of lawn and therefore a stone surface may be provided.

State Environmental Quality Review Act (SEQRA)
Monroe County would be the apparent lead agent for the existing building renovations and building addition for the Wolk Nursing Center. In accordance with New York State’s SEQRA guidelines, this project would be an Unlisted Action to which Monroe County has determined would undergo a coordinated review. A short environmental assessment form has been prepared.

The involved agencies to be contacted in order to finalize lead agency status, has been identified as follows:

• Town of Brighton
• Monroe County
• Dormitory Authority of the State of New York
• Monroe County Water Authority (water main extension and back flow preventer
• New York State Historic Preservation Office
• Monroe County is in the process of distributing letters indicating their intent to establish themselves as lead agent. Once these agencies have responded that this is a matter for Monroe County, a SEQRA determination can be initiated and impacts investigated.
Codes and Standards

All work will comply with the following:
- Plumbing Code of New York.
- NFPA-13, Installation of Sprinkler Systems.
- ICC/ANSI A117.1 – Standard on Accessible and Usable Buildings and Facilities

Plumbing

Domestic Water System – Cold, Hot and Re-circulating:

Domestic cold water will be connected to the campus water main. A water meter assembly will be provided.

The water service will be equipped with reduced pressure zone backflow preventers (BFP) installed in a duplex arrangement. A drain, sized to carry the full backflow relief valve discharge, will be provided. The backflow preventers will be located such that the relief valve discharge will flow by gravity. The existing water service in Building 8 will be back fed off of the proposed BFP.

Hot water supply and return will tie into the existing system served off of a heat exchanger in Building 8.
All piping shall be thermally insulated.

A water cooler will be provided for each floor in a common area.

Sanitary Waste and Vent Systems:

All waste from fixtures and floor drains located in Toilet Rooms, Mechanical Rooms, etc. will be considered sanitary waste and will be disposed to the campus sanitary system.

Storm Water Drainage System:

All drainage from roof drains will be transmitted to the campus storm water system. Roof drains will be added to the affected areas of existing roof, located at mid-spans of beams to improve performance.
A secondary storm drainage system will be provided at locations where the roof perimeter construction extends above the roof such that water will become entrapped if the primary system becomes disabled for some reason.
HVAC

A new air handling unit will be provided to serve the addition and west part of the existing Building 9. The air handling unit will be designed to deliver 35,000 CFM and will be a variable volume system. The air handling unit will be a custom unit and will be located at the roof of the existing building. The air handling unit will be a blow through configuration and consist of supply fan, return fan, economizer, chilled water coil, hot water preheat coil and filter sections.

The supply air distribution system will be provided with variable air volume terminal units with reheat coils for each zone. The supply air distribution system will be fully ducted. The return air distribution system will be partially ducted utilizing the space above the ceiling as a plenum return system. The proposed zoning for the air distribution system is shown on Drawing H-1 and H-2.

The chilled water and heating hot water for the air handling unit will be piped to the unit from the existing mains in the corridor of the first floor. Two way control valves will be provided on each coil. The heating hot water will also be piped to all the reheat coils or at the air terminal units.

The toilet rooms on the first and second floors will be served by an exhaust system. The exhaust fan will be located at the roof. Existing toilet room will be connected to new exhaust fan.

Tele/data closets at the first and second floors will be served by Liebert Mini Mate Dx unit. The air cooled condensing units will be located at the roof.

The electric room at the first floor will be provided with an exhaust system to remove heat from the transformer(s) located in the space. Room VAV boxes will be interlocked with the space occupancy sensor to setback ventilation air at unoccupied periods.

All new HVAC equipment will be provided with direct digital controls (DDC) connected to the existing campus control system for controlling and monitoring the new equipment.

Where hazardous gases or chemicals may be present or used (i.e. custodial areas) each space is exhausted sufficiently to create negative pressure with respect to adjacent spaces with the doors to the room closed. Self-closing doors and deck to deck partitions are provided. The exhaust rate is minimum 0.50 cfm/sq.ft., with no air recirculation with adequate pressure differential with the surrounding spaces.

Minimum Efficiency Reporting Value (MERV) of 13 Air filtration media is provided. Filtration is applied to process both return and outside air that is to be delivered as supply air.

Design for adaptability to future uses

The Wolk Center building is designed with a simple plan such that the labs and offices spaces can easily serve another similar tenant or be retrofitted to adapt to new use or future needs.

Information and software tools:

The building control system was manufactured Siemens.

Other information resources and software tools that were most helpful in the creation of this project include: LEED-Online, AutoCAD, EQuest (v 3.6)/DOE-2.2, and Adobe Acrobat.
Identifying Information

Short Project Name: Wolk Center for Excellence in Nursing
Full project name: The Louis S. and Molly B. Wolk Center for Excellence in Nursing

Project owner: Monroe Community College
Owner type: Public

Project size: 22,880 SF

Default units of measurement: English
Floors above Ground Plane: 2
Construction Classification Code: 1B
Occupancy Classification Code: Group B
Project Building Code: New York State Building Code
Full-Time Equivalent occupants: 229 (Please see “Appendix A” for details)
Illustration from LEED Sustainable Sites Credit 2, Community Connectivity, Parrone Engineering

Project Details

Site size

Total Property Area: (in Square Feet) 56,628,000

Gross Square Footage: (in Square Feet) 22,880

Total Building Footprint: (in Square Feet) 11,440

Surface parking spaces: None added

Structure Parking Spaces: 0

Undisturbed Site Area: 0

Site Context/Setting: Suburban

Site Conditions: Previously Developed

Site conditions

[X] Pristine land (greenfield)

[X] Previously developed land

[X] Previously undeveloped land

[X] Brownfield site

[X] Lake/pond

[X] Sensitive habitat

[X] Preexisting structure(s)

Context/Setting

Address: 1000 East Henrietta Road

Rochester, NY 14623

Latitude Degrees Minutes [north/south]:

N 43° 05’ 59.0”

Longitude Degrees Minutes [east/west]:

W -77° 36’ 38.5”

Elevation: 514’ ASL +/-

Site context/setting: Suburban, Campus
Number of buildings
- Single Building: Addition
- Size of building: 22,880 SF
- Building Footprint: 11,440 SF

History and completion date
- Percent New: 100%
- Percent renovation: 0% (limited renovations in connecting)
- Historic?: No
- Year of construction: 2007-2008
- Year of last major renovation: N/A
- Date of completion /occupancy: August 2008
- Completion date notes: None

Context/Setting:

Occupancy
- Primary occupant type: Not for Profit
- Owner occupied: Yes
- Typical number of permanent occupants: 18 people
- Average hours per permanent occupant: varies
- Typical number of visitors per week people: 316 people (includes student occupancy)
- Average hours per visitor hours per week: 5.4 hours per week
- Details about occupancy: Predominantly a mix of nursing labs and office spaces; learning center, staff/student lounge and required support areas are also provided.
Building types

- Commercial office
- Industrial (manufacturing, warehouse, recycling center, public works)
- Laboratory
- Restaurant
- Retail (store, supermarket, art gallery)
- Financial & communications (bank, post office, data center)
- Single-family residential
- Multi-unit residential (apartments, townhouses, dormitories, barracks)
- Special needs housing (assisted living, long-term care)
- Hotel/resort
- Daycare
- K-12 education
- Higher education
- Recreation
- Library
- Health care
- Animal care (veterinary, kennel)
- Interpretive Center (museum, nature center, aquarium, zoo)
- Assembly (conference center, community center, convention center, place of worship, performing arts, movie theater)
- Stadia & arenas
- Public order & safety (police station, fire station, correctional facility, courthouse)
- Transportation (airport, train station, bus station)
- Park (greenway, recreation space, wildlife)
- Campus (corporate campus, school)
- Community (neighborhood, residential development)
- Military base
- Regional plan
- Other: Academic Office

Indoor spaces

<table>
<thead>
<tr>
<th>Space</th>
<th>Percentage</th>
<th>Space</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal care</td>
<td>-</td>
<td>Living quarters</td>
<td>-</td>
</tr>
<tr>
<td>Cafeteria</td>
<td>-</td>
<td>Lobby/reception</td>
<td>3.9 %</td>
</tr>
<tr>
<td>Child care</td>
<td>-</td>
<td>Manufacturing</td>
<td>-</td>
</tr>
<tr>
<td>Circulation</td>
<td>26.8 %</td>
<td>Mechanical systems</td>
<td>1.7 %</td>
</tr>
<tr>
<td>Classroom</td>
<td>34.2%</td>
<td>Medical treatment</td>
<td>-</td>
</tr>
<tr>
<td>Conference</td>
<td>-</td>
<td>Office</td>
<td>12.3 %</td>
</tr>
<tr>
<td>Data processing</td>
<td>-</td>
<td>Public assembly</td>
<td>-</td>
</tr>
<tr>
<td>Detention</td>
<td>-</td>
<td>Restrooms</td>
<td>2.6 %</td>
</tr>
<tr>
<td>Dining</td>
<td>-</td>
<td>Retail food</td>
<td>-</td>
</tr>
<tr>
<td>Elder care</td>
<td>-</td>
<td>Retail general</td>
<td>-</td>
</tr>
<tr>
<td>Electrical systems</td>
<td>.5 %</td>
<td>Structured parking</td>
<td>-</td>
</tr>
<tr>
<td>Greenhouse</td>
<td>-</td>
<td>Warehouse</td>
<td>-</td>
</tr>
<tr>
<td>Gymnasium</td>
<td>-</td>
<td>Maintenance</td>
<td>-</td>
</tr>
<tr>
<td>Laboratory</td>
<td>-</td>
<td>Storage</td>
<td>2%</td>
</tr>
<tr>
<td>Lab/Classrm Support</td>
<td>16%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Keywords

Process
[] Integrated team [] Design charrette
[] Training [] Green framework
[] Simulation [X] Green specifications
[] Contracting [X] Commissioning
[] Performance measurement and verification [] Operations and maintenance

Community
[X] Transportation benefits [] Brownfield redevelopment
[X] Open space preservation

Site & Water
[X] Wildlife habitat [] Wetlands
[X] Indigenous vegetation [X] Stormwater management
[] Water harvesting [] Efficient fixtures and appliances
[] Efficient irrigation [X] Drought-tolerant landscaping
[] Graywater [] Wastewater treatment

Energy
[] Massing and orientation [] Insulation levels
[X] Glazing [] Airtightness
[] Passive solar [X] HVAC
[X] Lighting control and daylight harvesting [] Efficient lighting
[] On-site renewable electricity [] Cogeneration

Materials
[] Adaptable design [] Durability
[] Benign materials [] Salvaged materials
[X] Recycled materials [X] Local materials
[X] Certified wood [] C&D waste management
[X] Occupant recycling

Indoor Environment
[] Connection to outdoors [] Daylighting
[] Natural ventilation [X] Ventilation effectiveness
[] Moisture control [X] Thermal comfort
[] Noise control [X] Low-emitting materials
[X] Indoor air quality monitoring
Financing mechanisms

Credit enhancement

[] Loan guarantees-public (NYS) [] Loan guarantees-private

Equity

[] Cash [] Government appropriation
[] Historic tax credits [] Affordable housing tax credits
[] Green building tax credits [X] Other tax credits (NYSERDA)

Grant

[X] Public agency [X] Private

Loans

[] Public institution [] Private (bank, insurance)
[] Bond

Procurement process

[X] Design-bid-build (CM) [] Design-build
[] Performance based contracts
Sources

Data reliability

The foregoing constitutes the author’s understanding and interpretation of provided documentation.

Not for publication.

The information provided here is valid as of: December 2008

Information in this document was provided by the following sources:
 SWBR Architects
 • Monroe Community College
 • M/E Engineering, P.C.
 • SAIC Technical Assistance Study in support of New Construction Program, completed by SAIC, Revised April 2008.

Photos

For questions regarding use of photography or digital files, please contact SWBR Architects at:

SWBR Architects
387 East Main Street
Rochester, NY 14604-2197
tel: 585.232.8300
fax: 585.232.9221
Appendix A
Full-time Equivalent Employees
Full-Time Equivalent (FTE) Calculations

<table>
<thead>
<tr>
<th>Room</th>
<th>Usage</th>
<th>Full-Time Employees</th>
<th>Part-Time Employees</th>
<th>Student/Transient</th>
<th>Weekly hrs./utilization</th>
<th>Daily hrs./utilization</th>
<th>Daily Occupant Hours/8</th>
<th>FTE Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>Faculty Office</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>Faculty Office</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>Nur clsm.</td>
<td>22 24</td>
<td>4.8 0.6</td>
<td>13.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>Faculty Office</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>Faculty Office</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>Faculty Office</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>Secretary Office</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111A</td>
<td>Chair Office</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>Nur clsm.</td>
<td>22 24</td>
<td>4.8 0.6</td>
<td>13.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>Admin storage</td>
<td>1 4</td>
<td>0.8 0.1</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>Nur clsm.</td>
<td>22 24</td>
<td>4.8 0.6</td>
<td>13.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>Work room</td>
<td>1 6 1.2</td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>Nur clsm.</td>
<td>22 24</td>
<td>4.8 0.6</td>
<td>13.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>Faculty Office</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>Nur clsm.</td>
<td>22 24</td>
<td>4.8 0.6</td>
<td>13.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>Faculty Office</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>Faculty Office</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>Faculty Office</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>Nur clsm.</td>
<td>24 21</td>
<td>4.2 0.525</td>
<td>12.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>Storage</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>General Clsrm</td>
<td>35 34</td>
<td>6.8 0.85</td>
<td>29.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>General Clsrm</td>
<td>35 34</td>
<td>6.8 0.85</td>
<td>29.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>194</td>
<td>Data</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>199A</td>
<td>Mech. Room</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201</td>
<td>Faculty Office</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>203</td>
<td>Faculty Office</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>205</td>
<td>Faculty Office</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>207</td>
<td>Faculty Office</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>209</td>
<td>Faculty Office</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>211</td>
<td>Faculty Office</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>213</td>
<td>Lounge</td>
<td>3 40 8 1</td>
<td>1 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>215</td>
<td>Bed lab</td>
<td>9 8 1.6</td>
<td>0.2 1.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>216</td>
<td>Nur.LC</td>
<td>12 40 8 1</td>
<td>1 12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>216B</td>
<td>Office</td>
<td>1 25 5 0.625</td>
<td>0.625</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>217</td>
<td>Lab Support</td>
<td>1 4 0.8 0.1</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>219</td>
<td>Fundamentals</td>
<td>24 4.8</td>
<td>0.6 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>Lab support</td>
<td>1 5 1 0.125</td>
<td>0.125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>221</td>
<td>Part time Office</td>
<td>2 10 2 0.25</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>223</td>
<td>Adjunct Office</td>
<td>2 8 1.6</td>
<td>0.2 0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>224</td>
<td>Nur.clsm.</td>
<td>22 21</td>
<td>4.2 0.525</td>
<td>11.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>224A</td>
<td>Nur.clsm.</td>
<td>22 28</td>
<td>5.6 0.7</td>
<td>15.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>226</td>
<td>Nur.clsm.</td>
<td>22 21</td>
<td>4.2 0.525</td>
<td>11.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>226A</td>
<td>Nur.clsm.</td>
<td>22 28</td>
<td>5.6 0.7</td>
<td>15.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>294</td>
<td>Data</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Full-time Employees 18

Transient Occupant Calculation 211

Peak Building Users 229

* Due to limited utilization in these spaces, part-time employees sharing an office are not counted as full-time for calculation purposes since shift overlap does not occur.
Appendix B
Technical Assistance Study in Support of New Construction Program
October 2007
Revised April 2008

TECHNICAL ASSISTANCE STUDY IN SUPPORT OF NEW CONSTRUCTION PROGRAM

completed by
SAIC - CONTRACT #8103-04

for
Monroe Community College
Wolk Center Addition to Building 9 (School of Nursing)
Rochester, New York
Project Number: NCP7190

Science Applications International Corporation
6390 Fly Road
East Syracuse, New York

New York State
Energy Research and Development Authority
NOTICE

This report was prepared pursuant to the New Construction Program administered by the New York State Energy Research and Development Authority (hereafter the "Energy Authority"). The opinions expressed in this report do not necessarily reflect those of the Energy Authority or the State of New York, and reference to any specific product, service, process, or method does not constitute an implied or expressed recommendation or endorsement of it. Further, the Energy Authority and the State of New York make no warranties or representations, expressed or implied, as to the fitness for particular purpose or merchantability of any product, apparatus, or service, or the usefulness, completeness, or accuracy of any processes, methods, energy savings, or other information contained, described, disclosed, or referred to in this report. The Energy Authority and the State of New York make no representation that the use of any product, apparatus, process, method, or other information will not infringe privately owned rights and will assume no responsibility for any loss, injury, or damage resulting from, or occurring in connection with, the use of information contained, described, disclosed, or referred to in this report.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 1 – Executive Summary</td>
<td>1</td>
</tr>
<tr>
<td>Section 2 – Analysis Methodology</td>
<td>8</td>
</tr>
<tr>
<td>Section 3 – Whole Building Design Analysis</td>
<td>10</td>
</tr>
<tr>
<td>Section 4 – LEED® Energy and Atmosphere Credit 1 Analysis</td>
<td>16</td>
</tr>
</tbody>
</table>

Appendix A - Project Contact List

Appendix B - eQUEST/DOE-2.2 Output Reports for Baseline Code-Compliant Building

Appendix C - Estimated Incremental Construction Costs and eQUEST/DOE-2.2 Output Reports for Proposed Design Building

Appendix D - Regulated Energy Cost Savings Calculations for Entire Project and Each Individual Measure for NYSERDA NCP Analysis

Appendix E - Supporting Documentation for LEED® Energy and Atmosphere Credit 1

Appendix F - NYSERDA New Construction Program Worksheets
SECTION 1 - EXECUTIVE SUMMARY

OVERVIEW

The New York State Energy Research and Development Authority (NYSERDA) is offering financial incentives to qualified customers who implement electric energy efficiency measures in new construction or major renovation projects that exceed standard practice. The NYSERDA New Construction Program can offset a portion of the incremental first-cost associated with the selection and installation of qualifying measures.

Science Applications International Corporation (SAIC) completed an evaluation of energy efficiency opportunities specified or considered for a new 22,800 square foot two-story addition to Building 9 on the Brighton Campus of Monroe Community College (MCC). The addition will house classrooms, faculty offices and computer lab for the School of Nursing.

The project has been registered with the United States Green Building Council’s (USGBC) Leadership in Energy and Environmental Design (LEED®) program under LEED-NC Version 2.2. Consequently, the design team is incorporating features into the building that meet the criteria for a rating from the USGBC using the LEED® Rating System.

The new addition will be constructed with levels of insulation and glazing performance characteristics that exceed the prescriptive requirements of the Energy Conservation Construction Code of New York State (ECCC) and ASHRAE Standard 90.1-2004 – Energy Standard for Buildings Except Low-Rise Residential Buildings. The application of a high albedo (i.e., highly reflective) roof to reduce cooling loads and heat island effect is under consideration. One (1) LEED rating point is available if the requirements of Sustainable Sites (SS) Credit 7.2 – Heat Island Effect: Roof are met.

High-performance glazing will be provided to reduce solar heat gain and conductive heat loss and gain. Additionally, aluminum sun louvers are located above the windows at the second floor lounge and the main entrance to further reduce solar heat gain and to help control glare. SAIC evaluated insulation and glazing options during design development to help the design team optimize building energy and economic performance.

The HVAC system design calls for a central variable air volume (VAV) air handling unit to supply conditioned air to VAV terminal boxes serving individual zones. The supply and return fans in the unit will be fitted with variable frequency drives (VFDs) to vary the amount of air delivered to the building in response to a duct static pressure control. The air handling unit will include a hot water preheat coil and chilled water coil to maintain discharge air temperature at setpoint. Chilled and hot water will be supplied to the new addition from the existing campus central plant by variable flow/variable speed secondary pumping systems.

A building automation system (BAS) will provide monitoring, direct digital control (DDC), and central management of the HVAC systems. Control enhancements considered for the project include use of lighting occupancy sensors to reduce air flow through VAV terminal boxes serving offices and classrooms (and other appropriate spaces) when individual spaces are unoccupied; dual enthalpy economizer; and discriminator controls to reset duct static pressure and discharge air temperature setpoints on the VAV system. Demand controlled ventilation (DCV) was ruled out as a measure based on the VAV system type, resulting complexity and cost of providing the necessary carbon dioxide sensors.
and control, as well as limited potential for savings for the specific application. DCV is more typically applied to assembly areas served by single zone systems.

The lighting system will be designed for power densities significantly lower than ECCC maximums. The design team was advised to design the lighting system to power densities lower than ASHRAE Standard 90.1-2004 as it is more stringent than the ECCC, which is based on the 1999 Standard and has been shown to be cost-effective with improvements in lighting technology. Automatic daylight dimming control of fluorescent fixtures will be provided in the second floor lounge.

A summary of the design features that will reduce energy requirements follows.

- Improved levels of building envelope insulation over the prescriptive requirements of the ECCC and ASHRAE 90.1-2004.
- High-performance/reduced SHGC window glazing.
- Exterior solar sunshades.
- EnergyStar® compliant high albedo roof.
- High-efficiency lighting and controls with lighting power densities lower than the maximum permissible allowed by ASHRAE 90.1-2004.
- Daylight harvesting controls in the second floor lounge.
- Control enhancements through the building automation system (BAS) including use of lighting occupancy sensors to reduce air flow through VAV terminal boxes when individual spaces are unoccupied; enthalpy economizer on AHU-1; and discriminator controls to reset duct static pressure and discharge air temperature setpoints on the VAV air handling unit.
- Premium-efficiency motors that meet NYSERDA minimum prescriptive requirements.

For the NYSERDA New Construction Program analysis, eQUEST/DOE2.2 building energy simulation models were developed for the “as-designed” building that includes these features and a baseline code-compliant building. These two models were compared following a Whole Building Design approach to determine annual energy and summer on-peak demand savings for the proposed building design. Financial incentives available through the New Construction Program were then calculated based on electric energy and demand savings. Graphic representations of the eQUEST building model are shown below (Figures 1-1 and 1-2).
The project was evaluated by SAIC based on preliminary design documents and information provided by SWBR Architects, P.C. and M/E Engineering, P.C. Appendix A contains a list of contact names, addresses, and telephone numbers for the project participants.

METHODODOLOGY

The baseline and design buildings were modeled in eQUEST (version 3.6/DOE-2.2 release 44d5), a DOE-2.2 based hourly building energy simulation program developed by James J. Hirsch & Associates. This program applies state-of-the-art features that allow a modeler to enter key characteristics for the building shell, mechanical and electrical systems, along with characteristic operating strategies and schedules. The interactions between all of the different building loads, systems and plants are then simulated in hourly time intervals using typical or long-term average weather data for the location to provide a detailed account of energy consumption and demand.

For a whole building design approach, an energy simulation model is developed for the building with all energy efficiency measures under consideration implemented. These may include higher levels of building envelope insulation than required by code, high-performance glazing, energy-efficient lighting designs, and high-efficiency HVAC equipment. A baseline model is then developed that just meets the Energy Conservation Construction Code of New York State (ECCC). These two models are compared so the incentive for the project can be determined based on annual energy and summer and winter peak demand savings.

The incentive level for whole building projects depends on the percent energy cost savings for regulated end uses including lighting, space heating and cooling, fans and pumps, and service hot water. Unregulated end uses such as plug loads, vertical transportation, and process loads are exempt from the percent savings criteria. Annual electric energy costs were predicted by the energy simulation model based on Rochester Gas & Electric (RG&E) Large General Service Time-of-Use Electric Rate SC08 (ESCO option with supply adjustment) and Natural Gas Service SC03 tariffs.

RESULTS

Table 1-1 summarizes annual energy and peak demand savings for the proposed building design, along with the recommended incentive for the entire project and each individual measure. Energy savings and the recommended incentive for each individual measure were estimated by comparing the design model with all measures installed in the building to a baseline case with all measures implemented except for the one measure being evaluated. This approach provides interactive savings for the individual measures and, therefore, the best estimate of actual savings and incentive for each measure. The sum of the individual measure savings will not equal the savings determined from the comparison of the design model with all measures implemented and the baseline model with no measures.
Based on the results of the whole building analysis, the owner is eligible for an incentive of $15,841 if all of the measures listed above are implemented. This incentive reduces the simple payback period for the project from 4.57 to 3.20 years assuming a total incremental cost of $53,067 for all of the energy efficiency measures.

A few measures result in excessively long simple payback periods and may not be justified on energy savings alone. However, other reasons may exist to implement these measures. For example, a high albedo roof (EEM-4) reduces heat island effect and can result in one (1) LEED rating point if the requirements of Sustainable Sites (SS) Credit 7.2 – Heat Island Effect: Roof are met. Also, exterior solar sunshades (EEM-3) are provided to reduce glare in the space.

If LEED® certification is achieved and 2 or 3 points are obtained from LEED Energy and Atmosphere Credit 1 (EAc1) – Optimize Energy Performance, the capital cost incentive will be increased by 10% or $1,584. The applicant is also eligible for a $7,500 LEED incentive if the project becomes LEED® certified and a minimum of two points is achieved under the same credit. The project is expected to receive 3 rating points for the credit (see below). Therefore, the total incentive available to the applicant for the project is $24,925.

The applicant design team (i.e., architect or engineer of record) is eligible for an incentive of $1,476 based on the percent energy improvement over the energy code for the proposed building design (25.1%). For projects that exceed the energy code by 25.1%, an incentive of $90/kW summer peak demand saved is available.

Energy savings from the proposed building design would, if fully implemented, provide societal benefits in the form of reduced emissions from power generating plants including nitrogen oxides (NOₓ), sulfur oxides (SOₓ), and carbon dioxide (CO₂). The energy savings predicted for the project would result in the following annual reduction in emissions:

- 79 pounds of nitrogen oxides (NOₓ)
- 159 pounds of sulfur oxides (SOₓ)
- 29 tons of carbon dioxide (CO₂)
These savings are equivalent to removing six cars from the road.

Summary of NYSERDA Incentives:

The following table summarizes financial incentives available from NYSERDA for the project. NYSERDA will issue an incentive check to the Owner for the energy efficiency measures after construction is completed and the measures are inspected to verify program compliance. A second check will be issued by NYSERDA for incentives related to LEED certification after certification is obtained.

<table>
<thead>
<tr>
<th>Analysis Method</th>
<th>Incentive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole Building Design</td>
<td>$15,841</td>
</tr>
<tr>
<td>LEED® Green Building Bonus (10%)</td>
<td>$1,584</td>
</tr>
<tr>
<td>Applicant LEED® Incentive</td>
<td>$7,500</td>
</tr>
<tr>
<td>Applicant Design Team Incentive</td>
<td>$1,476</td>
</tr>
<tr>
<td>Total Incentive Upon LEED® Certification</td>
<td>$26,401</td>
</tr>
</tbody>
</table>

COMMISSIONING

Commissioning of the energy efficiency measures is required by the New Construction Program when the recommended incentive exceeds $100,000. Since the incentive for this project is less than $100,000, commissioning is not required to meet Program requirements. However, the building must be commissioned to meet the requirements of LEED® *Energy and Atmosphere Prerequisite 1 – Fundamental Commissioning of the Building Energy Systems* if LEED certification is pursued. The six LEED requirements outlined in LEED-NC Version 2.2 Reference Guide for *EAp1* are:

1. Designate an individual as the Commissioning Authority (CA) to lead, review and oversee the completion of the commissioning process activities.
2. The Owner shall document the Owner’s Project Requirements (OPR). The design team shall develop the Basis of Design (BOD). The CA shall review these documents for clarity and completeness. The Owner and design team shall be responsible for updates to their respective documents.
3. Develop and incorporate commissioning requirements into the construction documents.
4. Develop and implement a commissioning plan.
5. Verify the installation and performance of the systems to be commissioned.
6. Complete a summary commissioning report.

The project would be eligible for one rating point if LEED *Energy and Atmosphere Credit 3 – Enhanced Commissioning* is completed.

LEED® ENERGY AND ATMOSPHERE CREDIT 1 – OPTIMIZE ENERGY PERFORMANCE

The design team has incorporated features into the building that meet the criteria for a rating from the United States Green Building Council (USGBC) using the LEED® (Leadership in Energy and Environmental Design) Rating System. To assist in this effort, SAIC developed eQUEST/DOE-2.2 models of the proposed and baseline buildings to determine the number of additional rating points available from LEED *Energy and Atmosphere Credit 1 (EAc1) – Optimize Energy Performance*. The LEED® *Option 1 – Whole Building Energy Simulation* compliance path was followed. This approach uses the Building Performance Rating Method (PRM) outlined in Appendix G of ASHRAE 90.1-2004. Section 4 presents the results of this analysis.
Based on this analysis, the design building provides 19.3% energy cost savings relative to the baseline building. This results in three (3) LEED rating points for EAc1. The number of points awarded for the credit is subject to USGBC review of the credit submission.

It should be noted that the portion of the existing building to be served by AHU-1 was not modeled because it is not yet defined. As noted in Section 3, the 35,000 CFM unit is sized to meet loads in the new addition as well as loads in a portion of the existing building that will be converted to VAV in a future construction phase. The PRM states in Table G3.1 that it is acceptable to predict performance using building models that exclude parts of the existing building provided that the excluded areas are served by HVAC systems that are entirely separate from those serving parts of the building that are included in the building model. Since this condition could not be met, it may be necessary to update the building models to meet the requirements of the PRM after the VAV system design for areas of the existing building to be served by AHU-1 is known. Consequently, the final number of LEED EAc1 rating points could deviate from the 3 points estimated in this study.

The campus is served by a combined heat and power (CHP) plant owned and operated by Siemens. A LEED CHP calculation methodology released by the USGBC in April 2006 allows for the energy benefits of campus CHP systems to be considered at the building level under EAc1 if the minimum annual CHP efficiency is at least 60% based on the Lower Heating Value (LHV) of the input fuel (natural gas). However, data provided by MCC and Siemens indicate an annual efficiency of about 57%. Therefore, no credit was taken for the campus CHP system under EAc1.

REPORT CONTENT

Section 2 of this report presents the analysis methodology. Section 3 addresses the whole building analysis including a description of the building design and the baseline comparison, energy analysis, incremental construction cost, and incentive calculation. Section 4 evaluates the building’s potential to receive additional rating points from LEED Energy and Atmosphere Credit 1 – Optimize Energy Performance. The appendices of this report contain DOE-2.2 output reports, energy analysis spreadsheets, construction cost estimates, NYSERDA worksheets for the whole building design application, and supporting documentation for the LEED analysis.
SECTION 2 – ANALYSIS METHODOLOGY

The baseline and design buildings were modeled in eQUEST (version 3.60), a DOE-2.2 based hourly building energy simulation program developed by James J. Hirsch & Associates. This program applies state-of-the-art features that allow a modeler to enter key characteristics for the building shell, mechanical and electrical systems, along with characteristic operating strategies and schedules. The interactions between all of the different building loads, systems and plants are then simulated in hourly time intervals using typical or long-term average weather data for the location to provide a detailed account of energy consumption and demand. All simulations used Rochester TMY2 (Typical Meteorological Year) weather data, which represents typical year conditions.

The LOADS analysis program of DOE-2.2 calculates peak loads and hourly space loads imposed by ambient weather conditions and internal occupancy, lighting and equipment, as well as by variations in the size, location, orientation, construction, and materials for walls, roofs, and windows. The HVAC program simulates the operation of secondary Heating, Ventilating, and Air Conditioning (HVAC) components including fans, coils and economizers that are operated according to various user-defined temperature schedules as well as primary HVAC equipment such as boilers, chillers, and cooling towers. Utility rate structures are modeled in the ECONOMICS program to calculate building energy costs.

Architectural drawings provided to SAIC were used to obtain dimensional information and construction characteristics on the building. Thermal zones were established primarily based on building exposure, common space type, and the actual HVAC zones indicated on the drawings. Design ratings for the HVAC systems were obtained from the design drawings, specifications and manufacturer’s performance data.

Installed lighting loads were calculated by SAIC from reflected ceiling plans and fixture specifications provided by the design team. Plug loads were based on the electrical equipment that would be expected in each space (e.g., office equipment, computers, copiers, etc.). This information was used to estimate installed lighting and equipment Watts for the model. Typical occupancy levels and schedules were obtained from the owner. The program not only models input energy to lighting and electrical equipment, but it also calculates heat generated by these systems and building occupants and the resulting load imposed on the building’s HVAC systems.

For a whole building design approach, an energy simulation model is developed for the building with all energy efficiency measures under consideration implemented. A baseline model is then developed that just meets the Energy Conservation Construction Code of New York State. These two models are compared so the incentive for the project can be determined based on annual energy and summer peak demand savings.

For the NCP and LEED® assessments, the whole building design results are measured on percent energy cost savings. However, the NCP analysis follows the Energy Cost Budget Method of ASHRAE Standard 90.1-1999, which separates building energy end-uses into regulated and unregulated loads. Regulated end uses include lighting, space heating and cooling, fans and pumps, and service hot water. Unregulated end uses, such as plug loads, vertical transportation, and process loads, are exempt from the percent savings criteria. The ASHRAE 90.1-2004 Performance Rating Method used for the LEED EAe1 analysis does not separate the end uses into regulated and unregulated loads. This approach is discussed further in Section 4.

Rochester Gas & Electric (RG&E) Large General Service Time-of-Use Electric Rate SC08 (ESCO option with supply adjustment) and Natural Gas Service SC03 tariffs were modeled in eQUEST to estimate
annual energy costs and to calculate the percent energy cost reduction. Only electrical energy and summer on-peak demand savings can be considered for the incentive calculation. The following table presents the unit incentive for each tier. Incentives are capped at 60% of the incremental cost for the project or $400,000, whichever is less.

Table 2-1: NYSERDA New Construction Program Whole Building Design Incentives for PON 1035

<table>
<thead>
<tr>
<th>Percent Above Code</th>
<th>Energy ($/kWh)</th>
<th>Summer On-Peak Demand ($/kW)</th>
<th>Winter On-Peak Demand ($/kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10% to 15%</td>
<td>$0.14/kWh</td>
<td>$370/kW</td>
<td>$0/kW</td>
</tr>
<tr>
<td>>15% to 20%</td>
<td>$0.15/kWh</td>
<td>$390/kW</td>
<td>$0/kW</td>
</tr>
<tr>
<td>>20% to 25%</td>
<td>$0.16/kWh</td>
<td>$410/kW</td>
<td>$0/kW</td>
</tr>
<tr>
<td>Over 25%</td>
<td>$0.17/kWh</td>
<td>$420/kW</td>
<td>$0/kW</td>
</tr>
</tbody>
</table>

Construction cost estimates were developed by SAIC. The cost estimates were based on cost data provided by the design team (if available), vendor quotes, previous projects evaluated by SAIC for the New Construction Program and material costs, labor costs, overhead and profit taken from current R.S. Means Electrical, Mechanical and Construction Cost Data (30th Annual Edition, 2007).
SECTION 3 – WHOLE BUILDING DESIGN ANALYSIS

Proposed Project and Baseline Description: The proposed project includes the following energy efficiency measures. These measures are not required by code or considered standard design practice for the building addition.

- Improved levels of building envelope insulation.
- High-performance/reduced SHGC window glazing.
- Exterior solar sunshades.
- EnergyStar® compliant high albedo roof.
- High-efficiency lighting and controls with lighting power densities lower than the maximum permissible allowed by ASHRAE 90.1-2004.
- Daylight harvesting controls in the second floor lounge.
- Control enhancements through the building automation system (BAS) including use of lighting occupancy sensors to reduce air flow through VAV terminal boxes when individual spaces are unoccupied; enthalpy economizer on AHU-1; and discriminator controls to reset duct static pressure and discharge air temperature setpoints on the VAV air handling unit.
- Premium-efficiency motors that meet NYSERDA minimum prescriptive requirements.

Table 3-1 compares construction and efficiency characteristics of the baseline and design buildings simulated by the eQUEST models developed for this study. The baseline column lists the minimum prescriptive requirements of the Energy Conservation Construction Code of New York State (ECCC) or ASHRAE 90.1-1999 for the building envelope, lighting, and HVAC systems. The source of data for the baseline code model is also presented in the table. Design parameters are based on information shown on drawings and provided to SAIC by the project team. Reference is made to ASHRAE Standard 90.1-1999 (Energy Standard for Buildings Except Low-Rise Residential Buildings) when a component is not directly addressed by the ECCC.
Table 3-1: Comparison of Baseline and Design Building Characteristics – NYSERDA NCP Analysis (Climate Zone 14a)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Baseline Building</th>
<th>Design Building</th>
<th>Baseline Source/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Loads (11% Glazed Area)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall Insulation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Masonry Walls</td>
<td>R-0 cavity</td>
<td>R-0 cavity</td>
<td>ECCC Table 802.2(5)</td>
</tr>
<tr>
<td></td>
<td>R-5 continuous</td>
<td>R-12 continuous</td>
<td></td>
</tr>
<tr>
<td>Roof Insulation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metal Deck</td>
<td>R-19 continuous</td>
<td>R-25 continuous</td>
<td>ECCC Table 802.2(5)</td>
</tr>
<tr>
<td>Exterior Window Sunshades</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Window Glazing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U-factor</td>
<td>0.60</td>
<td>0.25</td>
<td>ECCC Table 802.2(5)</td>
</tr>
<tr>
<td>SHGC</td>
<td>0.50/0.60</td>
<td>0.29</td>
<td>(see Note 1)</td>
</tr>
<tr>
<td>High Albedo Roof</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial Solar Reflectance</td>
<td>0.30</td>
<td>0.75</td>
<td>LEED-NC Version 2.1 Reference Guide (pg. 142)</td>
</tr>
<tr>
<td>3-year Aged Solar Reflectance</td>
<td>NA</td>
<td>0.65</td>
<td>and ASHRAE 90.1-1999 Section 11.4.2.b (see</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Note 2)</td>
</tr>
<tr>
<td>Infrared Emittance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.30</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>Interior Lighting (Entire Building)</td>
<td>1.50 W/ft²</td>
<td>1.03 W/ft²</td>
<td>ECCC Table 805.4.2 (see Note 3)</td>
</tr>
<tr>
<td></td>
<td>33,899 Watts</td>
<td>23,258 Watts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Daylighting Controls</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Exterior Lighting (Entire Site)</td>
<td>0.85 kW</td>
<td>0.85 kW</td>
<td></td>
</tr>
<tr>
<td>Vertical Transportation</td>
<td>20 kW</td>
<td>20 kW</td>
<td></td>
</tr>
<tr>
<td>Plug Load (Entire Building)</td>
<td>0.75 W/ft²</td>
<td>0.75 W/ft²</td>
<td>Note 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HVAC and Service Water Heating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HVAC System Type (NCP Analysis)</td>
<td>VAV system with fan VFDs for AHU-1</td>
<td>VAV system with fan VFDs for AHU-1</td>
<td>ASHRAE 90.1-1999 Figure 11.4.3 and Table 11.4.3A</td>
</tr>
<tr>
<td></td>
<td>(System 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Existing Central Plant Chiller Efficiency</td>
<td>Existing plant with estimated 0.60 kWh/ton-hr seasonal performance</td>
<td>Existing plant with estimated 0.60 kWh/ton-hr seasonal performance</td>
<td>Existing Chiller Plan</td>
</tr>
<tr>
<td>Existing Central Plant Boiler Efficiency</td>
<td>80%</td>
<td>80%</td>
<td>Existing Boiler Plant</td>
</tr>
<tr>
<td>Service Water Heating Efficiency</td>
<td>80%</td>
<td>80%</td>
<td>Existing System</td>
</tr>
<tr>
<td>Secondary Hot and Chilled Water Pump Flow Control</td>
<td>Variable Speed/Variable Flow</td>
<td>Variable Speed/Variable Flow</td>
<td>Existing Secondary Pumping System</td>
</tr>
<tr>
<td>DDC Enhancements</td>
<td>Airside Economizer on AHU-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Occuancy Sensors for VAV Optimization</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Discharge Air Temperature Reset</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dry-Bul</td>
<td>Enthalpy</td>
<td>ECCC Section 803.2.6 and ASHRAE 90.1 Table 6.3.1</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Motors</td>
<td>EPACT 92</td>
<td>NEMA Premium</td>
<td>ASHRAE 90.1 Table 10.2</td>
</tr>
</tbody>
</table>
Notes:
1. Baseline code glazing and envelope insulation levels are dependent on percentage of window and glazed door area on above-grade walls. Glass area covers 11 percent of the gross wall area. Second listing for baseline Solar Heat Gain Coefficient (SHGC) is for windows beneath overhangs. First value is for remaining windows.
2. LEED-NC Version 2.1 Reference guidelines specify Energy Star compliant (highly reflective) and high emissivity roofing (with emissivity of at least 0.90 when tested in accordance with ASTM 404). Modeled 3-year aged reflectance of 0.65 for design building.
3. Average lighting power density calculated from sum-total of all spaces. ASHRAE 90.1 and ECCC building area method used to determine baseline lighting power allowance (1.50 W/ft² maximum for a school building).
4. Miscellaneous electric (plug) loads based on survey of building owner and/or design team to estimate number of personal computers, display equipment, etc. in each DOE-2.2 zone.

The HVAC system design calls for a new central variable air volume (VAV) air handling unit designated as AHU-1. AHU-1 delivers primary air to 45 VAV terminal boxes with hot water reheat coils, which are controlled to maintain space temperature in individual zones at setpoint. The 35,000 CFM unit is sized to meet loads in the new addition as well as loads in a portion of the existing building that will be converted to VAV in a future construction phase.

The 75 hp supply air fan and 40 hp return fan will be fitted with variable frequency drives (VFDs) to modulate fan speed and airflow in response to a duct static pressure control. The air handling unit will include a hot water preheat coil and chilled water coil to maintain discharge air temperature at setpoint. A dry bulb or enthalpy economizer will allow for free cooling when outdoor conditions permit.

Chilled and hot water will be supplied to the new addition from the existing campus central plant. Two nominal 800 ton water-cooled centrifugal chillers normally operate to meet campus cooling loads. A 400 ton absorption chiller that is driven by the cogeneration system also exists, but this chiller reportedly only operates on occasion. Chilled and hot water is distributed to the new addition by existing secondary variable speed/variable flow pumping systems.

A building automation system (BAS) will provide monitoring, direct digital control (DDC), and central management of the HVAC systems. SAIC evaluated a dual enthalpy economizer for AHU-1 in lieu of a dry bulb economizer, which is required by code.

The lighting system is designed for an overall power density that is lower than the maximum specified by the ECCC following the building area method. The lighting power density for the building is approximately 1.03 Watts per square foot. This compares to a maximum lighting power density of 1.5 Watts per square foot for a school building as stipulated in the energy code and ASHRAE Standard 90.1-1999.

Automatic daylight dimming control of fluorescent fixtures will be provided in the second floor lounge. Photocells and controllers will be provided to measure lighting levels in the space and control artificial lighting (via dimming ballasts) to maintain 50 footcandles.

Contributing to the overall energy efficiency of the building are improvements in building insulation levels and glazing performance characteristics. Code requirements for the envelope are a function of percent glazed area on above-grade walls. Windows and glazed doors cover about 11% of the gross wall area.

Exterior wall insulation and window glazing specified for the building meet or exceed prescriptive requirements of the ECCC (see Table 3-1). For example, the exterior wall consists of 4-inch facebrick backed by an air layer, 2-inches of rigid insulation (nominal R-12), and 8-inch CMU. This compares to minimum R-5 continuous insulation required by the ECCC for a CMU wall without interior framing in Climate Zone 14a. The initial design called for nominal R-10 insulation, but the design team opted for R-
12 insulation in the final design based on a preliminary evaluation completed by SAIC. Physical limitations prevented the application of thicker insulation.

The flat roof deck will be insulated with an average of 4 inches of polyisocyanurate having an aged thermal resistance of nominal R-24 (R-6.4 per inch). This level of insulation is higher than the minimum prescriptive requirements of the ECCC for a metal deck (R-19).

SAIC assumed that the roofing membrane on the flat roof will be highly reflective (minimum 0.75 initial solar reflectance). This Energy Star compliant membrane is intended to reduce heat island effect and solar heat gain into the building, lowering cooling energy requirements.

Low-E argon filled windows have been specified for the building with a 0.25 U-factor and 0.29 solar heat gain coefficient (SHGC). Glazing with reduced solar heat gain coefficient lowers space cooling loads and energy requirements, while lower U-factors primarily reduce heating energy requirements. Additionally, aluminum sun louvers are located above the windows at the second floor lounge and the main entrance to further reduce solar heat gain and to help control glare.

Baseline HVAC System Description for New Construction Program Analysis: The baseline HVAC system for variable air volume air handling unit AHU-1 is a VAV system with chilled water cooling and hot water heating. This baseline is consistent with Figure 11.4.3 (HVAC Systems Map) in ASHRAE Standard 90.1, which is used to establish an appropriate baseline HVAC system type for the Standard’s Energy Cost Budget (ECB) method and does not allow for baseline systems that deviate significantly from the design system.

Building Energy Analysis: Energy and demand savings were estimated using the eQUEST/DOE-2.2 building energy simulation program. Appendix B and C present DOE-2 input and selected output reports for the baseline code-compliant building and the proposed design, respectively.

Based on anticipated building usage, the HVAC system was assumed to be scheduled to operate in occupied mode Monday through Friday from 6:00 a.m. to 10:00 p.m., Saturday from 7:00 a.m. to 10:00 p.m., and Sunday from 9:00 a.m. to 5:00 p.m.
Table 3-2 compares annual energy use and demand predicted by DOE-2.2 for the major end-uses in the building for the baseline and design buildings evaluated for the NYSERDA New Construction Program.

Table 3-2: Comparison of Building Energy Use and Demand for Baseline Code and Design Building Models – NYSERDA NCP Analysis

<table>
<thead>
<tr>
<th></th>
<th>Baseline Building</th>
<th>Design Building</th>
<th>Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Summer Demand kW</td>
<td>88.7</td>
<td>72.3</td>
<td>16.4</td>
</tr>
<tr>
<td>Maximum Winter Demand kW</td>
<td>67.7</td>
<td>56.4</td>
<td>11.3</td>
</tr>
<tr>
<td>Area Lights kWh</td>
<td>90,810</td>
<td>60,489</td>
<td>30,321</td>
</tr>
<tr>
<td>Miscellaneous Equipment kWh</td>
<td>41,834</td>
<td>41,834</td>
<td>0</td>
</tr>
<tr>
<td>Space Heating kWh</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Space Heating Therms</td>
<td>13,307</td>
<td>8,874</td>
<td>4,433</td>
</tr>
<tr>
<td>Space Cooling kWh</td>
<td>37,805</td>
<td>20,033</td>
<td>17,772</td>
</tr>
<tr>
<td>Heat Rejection kWh</td>
<td>1,080</td>
<td>416</td>
<td>664</td>
</tr>
<tr>
<td>Pumps and Miscellaneous kWh</td>
<td>8,441</td>
<td>7,102</td>
<td>1,339</td>
</tr>
<tr>
<td>Vent Fans kWh</td>
<td>65,196</td>
<td>62,630</td>
<td>2,566</td>
</tr>
<tr>
<td>Exterior Lighting kWh</td>
<td>2,835</td>
<td>2,835</td>
<td>0</td>
</tr>
<tr>
<td>Domestic Hot Water Therms</td>
<td>778</td>
<td>777</td>
<td>1</td>
</tr>
<tr>
<td>Total Electricity kWh</td>
<td>248,001</td>
<td>195,339</td>
<td>52,662</td>
</tr>
<tr>
<td>Total Natural Gas Therms</td>
<td>14,085</td>
<td>9,651</td>
<td>4,434</td>
</tr>
<tr>
<td>Total Electric Cost @ RG&E SC-8 dollars</td>
<td>$39,146</td>
<td>$32,048</td>
<td>$7,098</td>
</tr>
<tr>
<td>Total Gas Cost @ RG&E SC-3 dollars</td>
<td>$14,756</td>
<td>$10,232</td>
<td>$4,524</td>
</tr>
<tr>
<td>Total Utility Cost dollars</td>
<td>$53,902</td>
<td>$42,280</td>
<td>$11,622</td>
</tr>
<tr>
<td>Total Regulated Electric Cost dollars</td>
<td>$32,543</td>
<td>$25,185</td>
<td>$7,358</td>
</tr>
<tr>
<td>Total Regulated Gas Cost dollars</td>
<td>$14,756</td>
<td>$10,232</td>
<td>$4,524</td>
</tr>
<tr>
<td>Total Regulated Utility Cost dollars</td>
<td>$47,299</td>
<td>$35,417</td>
<td>$11,882</td>
</tr>
</tbody>
</table>
Incremental Cost: The estimated incremental cost for the proposed building design relative to the baseline building is $53,067 (see Appendix C). This includes all of the upgrades listed in Table 3-1.

Summary of Annual Electric Energy and Demand Savings and Recommended Incentive:

The following table summarizes electric energy and demand savings for the project, total energy cost savings, the recommended performance-based NYSERDA incentive, and resulting simple payback period. All incentives available for the project are presented in Section 1.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Savings (kWh)</td>
<td>52,662</td>
</tr>
<tr>
<td>Peak Summer Demand Savings (kW)</td>
<td>16.4</td>
</tr>
<tr>
<td>Peak Winter Demand Savings (kW)</td>
<td>11.3</td>
</tr>
<tr>
<td>Energy Savings (Therms)</td>
<td>4,434</td>
</tr>
<tr>
<td>Total Annual Cost Savings</td>
<td>$11,622</td>
</tr>
<tr>
<td>Simple Payback Period with Incentive (years)</td>
<td>3.20</td>
</tr>
<tr>
<td>NYSERDA Incentive</td>
<td>$15,841</td>
</tr>
</tbody>
</table>
SECTION 4 – LEED® ENERGY AND ATMOSPHERE CREDIT 1 ANALYSIS

The design team has incorporated features into the building that meet the criteria for a rating from the United States Green Building Council (USGBC) using the LEED® (Leadership in Energy and Environmental Design) Rating System. This section presents the results of the LEED Energy and Atmosphere Credit 1 (EAc1) analysis on the building design evaluated in Section 3 for NYSERDA New Construction Program incentives.

METHODOLOGY

SAIC developed eQUEST building energy simulation models of the proposed (i.e., design) and baseline buildings to determine the number of rating points available from LEED Energy and Atmosphere Credit 1 (EAc1) – Optimize Energy Performance. The LEED® Option 1 – Whole Building Energy Simulation compliance path was followed. This approach uses the Building Performance Rating Method (PRM) outlined in Appendix G of ASHRAE 90.1-2004. Addendum a to the Standard was also followed, which eliminates the requirement to distribute glazing in horizontal bands for the baseline building. Rochester TMY2 (Typical Meteorological Year) hourly weather data were used for all energy simulations.

The PRM calls for four baseline model calculations; one for the building oriented as designed and three others with the building rotated 90°, 180° and 270° from the actual orientation. Annual energy and utility costs for the final baseline building are calculated as the average of the simulation results for the four orientations. The baseline and design building models include all energy end uses for the site, including regulated (interior and exterior lighting, space heating and cooling, pumps, fans, service water heating, snow melt system) and non-regulated (elevators, and receptacle loads).

As required by the PRM, the non-regulated (process) energy use for both buildings is the same and has been scheduled such that the energy cost for the process loads is equal to 25% of the total energy cost for the baseline building. The PRM requires the default process energy use unless a detailed accounting of process loads is presented. The actual process energy use is likely much lower than that predicted by using the 25% default. This has the effect of reducing the percentage of energy savings calculated for the building, since the total energy consumption of both buildings will be higher. In order to achieve the default process energy consumption (kWh), the estimated power (kW) for the process loads was maintained (so that HVAC equipment capacity would not be affected) while operating hours were extended.

Utility costs were predicted by eQUEST based on Rochester Gas & Electric (RG&E) Large General Service Time-of-Use Electric Rate SC08 (ESCO option with supply adjustment) and Natural Gas Service SC03 tariffs. The effective blended average cost of electricity and natural gas calculated by the design building model is $0.1509/kWh and $1.078/Therm.

Annual energy costs predicted by the eQUEST model for the design building were compared to a baseline building with building envelope and energy systems that just meet the minimum prescriptive requirements of ASHRAE Standard 90.1-2004 to determine the percent improvement in building energy cost performance. ASHRAE 90.1-2004 lighting power density from Table 9.5.1 (Lighting Power Densities Using the Building Area Method) was used to determine the lighting power allowance for the baseline building.
Tables G3.1.1A and G3.1.1B of ASHRAE 90.1-2004 define the appropriate baseline HVAC system type. For this project the baseline system is a packaged (DX) constant volume system with natural gas-fired furnace section (System 3 – PSZ-AC).

In accordance with ASHRAE 90.1-2004 Appendix G, heating and cooling capacities of the baseline HVAC systems were oversized 25% and 15%, respectively, compared to eQUEST autosized loads. Baseline design air flowrates are based on a supply-air-to-room-air temperature difference of 20°F (Section G3.1.2.8). Baseline fan brake horsepower and input power was calculated from Table and Section G3.1.2.9 equations.

RESULTS

Table 4-1 compares construction and efficiency characteristics of the baseline and design buildings simulated by the eQUEST models developed for this study. The baseline column lists minimum prescriptive requirements of ASHRAE 90.1-2004 for the building envelope, lighting, HVAC systems, etc. The source of data for the baseline model is also noted in the Table.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Baseline Building</th>
<th>Design Building</th>
<th>Baseline Source/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Loads (11% Glazed Area)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall Insulation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design Masonry Walls/Baseline Steel</td>
<td>R-13 cavity</td>
<td>R-0 cavity</td>
<td>ASHRAE 90.1-2004</td>
</tr>
<tr>
<td>Frame Walls (as per PRM)</td>
<td>R-3.8 continuous</td>
<td>R-12 continuous</td>
<td>Table 5.5-5</td>
</tr>
<tr>
<td>Roof Insulation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metal Deck</td>
<td>R-15 continuous</td>
<td>R-25 continuous</td>
<td>ASHRAE 90.1-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Table 5.5-5</td>
</tr>
<tr>
<td>Slab-on-Grade Insulation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perimeter</td>
<td>F-0.73</td>
<td>F-0.60</td>
<td>ASHRAE 90.1-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Table 5.5-5</td>
</tr>
<tr>
<td>Exterior Window Sunshades</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Window Glazing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U-factor</td>
<td>0.57</td>
<td>0.25</td>
<td>ASHRAE 90.1-2004</td>
</tr>
<tr>
<td>SHGC</td>
<td>0.39/0.49 North</td>
<td>0.29</td>
<td>Table 5.5-5</td>
</tr>
<tr>
<td>High Albedo Roof</td>
<td>No</td>
<td>Yes</td>
<td>Note 2</td>
</tr>
<tr>
<td>Interior Lighting (Entire Building)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Density</td>
<td>1.20 W/ft²</td>
<td>1.03 W/ft²</td>
<td>ASHRAE 90.1-2004</td>
</tr>
<tr>
<td>Power Allowance</td>
<td>27,096 Watts</td>
<td>23,258 Watts</td>
<td>Table 9.5.1</td>
</tr>
<tr>
<td>Daylighting Controls</td>
<td>No</td>
<td>Yes</td>
<td>(see Note 3)</td>
</tr>
<tr>
<td>Occupancy Sensor Controls</td>
<td>As per ASHRAE 90.1-2004</td>
<td>As per ASHRAE 90.1-2004 plus private offices, restrooms, and storage areas</td>
<td></td>
</tr>
<tr>
<td>Exterior Lighting (Entire Site)</td>
<td>0.85 kW</td>
<td>0.85 kW</td>
<td></td>
</tr>
<tr>
<td>Vertical Transportation</td>
<td>20 kW</td>
<td>20 kW</td>
<td></td>
</tr>
<tr>
<td>Plug Load (Entire Building)</td>
<td>0.75 W/ft²</td>
<td>0.75 W/ft²</td>
<td>Note 4</td>
</tr>
<tr>
<td>Parameter</td>
<td>Baseline Building</td>
<td>Design Building</td>
<td>Baseline Source/Notes</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>HVAC System Type (LEED EAc1 Analysis)</td>
<td>Packaged constant volume system (one per thermal block) with DX cooling and gas furnace heating (System 3)</td>
<td>VAV system with fan VFDs for AHU-1</td>
<td>ASHRAE 90.1-2004 Tables G3.1.1A & G3.1.1B (see Note 5)</td>
</tr>
<tr>
<td>Existing Central Plant Chiller Efficiency</td>
<td>Existing plant with estimated 0.60 kWh/ton-hr seasonal performance</td>
<td>Existing plant with estimated 0.60 kWh/ton-hr seasonal performance</td>
<td>Existing Chiller Plant (see Note 6)</td>
</tr>
<tr>
<td>Existing Central Plant Boiler Efficiency</td>
<td>80%</td>
<td>80%</td>
<td>Existing Boiler Plant (see Note 6)</td>
</tr>
<tr>
<td>Service Water Heating Efficiency</td>
<td>80%</td>
<td>80%</td>
<td>Existing System</td>
</tr>
<tr>
<td>Secondary Hot and Chilled Water Pump Flow Control</td>
<td>Variable Speed/Variable Flow</td>
<td>Variable Speed/Variable Flow</td>
<td>Existing Secondary Pumping System</td>
</tr>
<tr>
<td>DDC Enhancements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airside Economizer on AHU-1</td>
<td>Dry-Bulb</td>
<td>Enthalpy</td>
<td>ASHRAE 90.1-2004 Section G3.1</td>
</tr>
<tr>
<td>Occupancy Sensors for VAV Optimization</td>
<td>NA</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Discharge Air Temperature Reset</td>
<td>NA</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Motors</td>
<td>EPACT 92</td>
<td>NEMA Premium</td>
<td>ASHRAE 90.1-2004 Table 10.8</td>
</tr>
</tbody>
</table>

Notes:
1. Baseline glazing is dependent on percentage of window and glazed door area on above-grade walls. Insulation R-values indicated in this Table do not account for thermal bridge effects, but baseline and design models do derate cavity insulation R-values as appropriate.
2. New roofs with a surface reflectance greater than 0.70 and an emissivity greater than 0.75 (high albedo) are modeled with an aged reflectance of 0.45. The baseline roof is modeled with a reflectance of 0.3. See Table G3.1 of ASHRAE 90.1-2004.
3. Average design lighting power density calculated from sum-total of all spaces. ASHRAE 90.1 building area method used to determine baseline lighting power allowance. Occupancy sensor controls required for classrooms, conference/meeting rooms, and lunch/break rooms.
4. Includes elevators and miscellaneous plug loads. Connected demand for plug loads determined based on values published in Table G-B of the ASHRAE 90.1 User’s Manual.
5. Modeled baseline packaged constant volume System 3 (one system per thermal block) with return air fan as per Section G3.1.2.8 and G3.1.2.9 (baseline building design shall be modeled with return air fans if specified in proposed building design).
6. Since the cost of the campus chilled and hot water utilities cannot be determined by MCC or the central plant operator (i.e., plant chilled and hot water output is not metered), a “dummy” chilled and hot water plant having performance characteristics similar to the campus plant and sized appropriately for the building addition was modeled for both the design and baseline buildings rather than modeling chilled and hot water utilities.
Table 4-2 compares baseline and design building annual energy use and demand predicted by eQUEST for the major end-uses as well as total energy use and costs for the entire building. As noted above, the baseline building results are the average of the four simulation run orientations.

<table>
<thead>
<tr>
<th></th>
<th>Units</th>
<th>Baseline Building</th>
<th>Design Building</th>
<th>Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Summer Demand kW</td>
<td></td>
<td>106.7</td>
<td>82.3</td>
<td>24.4</td>
</tr>
<tr>
<td>Maximum Winter Demand kW</td>
<td></td>
<td>75.1</td>
<td>62.5</td>
<td>12.6</td>
</tr>
<tr>
<td>Area Lights kWh</td>
<td></td>
<td>72,718</td>
<td>60,490</td>
<td>12,228</td>
</tr>
<tr>
<td>Task Lights kWh</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Miscellaneous Equipment kWh</td>
<td></td>
<td>97,981</td>
<td>97,981</td>
<td>0</td>
</tr>
<tr>
<td>Space Heating kWh</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Space Heating Therms</td>
<td></td>
<td>6,824</td>
<td>6,149</td>
<td>675</td>
</tr>
<tr>
<td>Space Cooling kWh</td>
<td></td>
<td>32,137</td>
<td>22,671</td>
<td>9,466</td>
</tr>
<tr>
<td>Heat Rejection kWh</td>
<td></td>
<td>0</td>
<td>534</td>
<td>(534)</td>
</tr>
<tr>
<td>Pumps and Miscellaneous kWh</td>
<td></td>
<td>6,270</td>
<td>6,787</td>
<td>(518)</td>
</tr>
<tr>
<td>Vent Fans kWh</td>
<td></td>
<td>123,605</td>
<td>64,788</td>
<td>58,817</td>
</tr>
<tr>
<td>Exterior Lighting kWh</td>
<td></td>
<td>2,835</td>
<td>2,835</td>
<td>0</td>
</tr>
<tr>
<td>Domestic Hot Water Therms</td>
<td></td>
<td>774</td>
<td>776</td>
<td>(2)</td>
</tr>
<tr>
<td>Total Electricity kWh</td>
<td></td>
<td>335,545</td>
<td>255,580</td>
<td>79,965</td>
</tr>
<tr>
<td>Total Natural Gas Therms</td>
<td></td>
<td>7,598</td>
<td>6,925</td>
<td>673</td>
</tr>
<tr>
<td>Total Electric Cost @ RG&E SC-8 dollars</td>
<td></td>
<td>$48,978</td>
<td>$38,575</td>
<td>$10,403</td>
</tr>
<tr>
<td>Total Gas Cost @ RG&E SC-3 dollars</td>
<td></td>
<td>$8,102</td>
<td>$7,467</td>
<td>$635</td>
</tr>
<tr>
<td>Total Utility Cost dollars</td>
<td></td>
<td>$57,081</td>
<td>$46,042</td>
<td>$11,039</td>
</tr>
</tbody>
</table>

Percent Energy Cost Savings 19.3%

Appendix E includes selected DOE-2.2 output reports for the LEED EAc1 baseline and design building models. These reports present annual energy use for each building end-use (reports PS-E, PS-F and BEPU) as well as economic reports (reports ES-D and ES-E) that summarize utility costs for both cases. Based on this analysis, the design building provides 19.3% savings relative to the baseline building. This results in three (3) LEED rating points for the credit. The number of points awarded for the credit is subject to USGBC review of the credit submission.

The eQUEST simulations are in compliance with the requirements of ASHRAE 90.1-2004 Appendix G for simulation discrepancies between the baseline and design models. According to Section G3.1.2.2 of the standard, the unmet load hours reported by the simulation output for both the baseline and design runs may not exceed 300 hours per year (of the 8,760 hours simulated). Further, unmet load hours for the
The proposed building design may not exceed the unmet load hours for the baseline building design by more than 50 hours per year. This requirement is intended as a final check that adjustments made to the baseline HVAC system sizing was done correctly (and in accordance with the Standard) so that the baseline system loading characteristics are similar to the design system.

It should be noted that the portion of the existing building to be served by AHU-1 was not modeled because it is not yet defined. As noted in Section 3, the 35,000 CFM unit is sized to meet loads in the new addition as well as loads in a portion of the existing building that will be converted to VAV in a future construction phase. The PRM states in Table G3.1 that it is acceptable to predict performance using building models that exclude parts of the existing building provided that the excluded areas are served by HVAC systems that are entirely separate from those serving parts of the building that are included in the building model. Since this condition could not be met, it may be necessary to update the building models to meet the requirements of the PRM after the VAV system design for areas of the existing building to be served by AHU-1 is known. Consequently, the final number of LEED EAc1 rating points could deviate from the 3 points estimated in this study.

Finally, the campus is served by a combined heat and power (CHP) plant owned and operated by Siemens. A LEED CHP calculation methodology released by the USGBC in April 2006 allows for the energy benefits of campus CHP systems to be considered at the building level under EAc1 if the minimum annual CHP efficiency is at least 60% based on the Lower Heating Value (LHV) of the input fuel (natural gas). The USGBC also requires a narrative addressing emissions and showing that the environmental impact of the system is lower than if building heating requirements were met with a natural gas boiler and cooling requirements with electric chillers using electricity provided from the local grid.

If these requirements were met, the proposed building addition design energy simulation model would utilize a “virtual” CHP system within the building with the same performance/efficiency characteristics as the district plant. All electricity and thermal output obtained from the district CHP plant is considered “free”, but fuel input is charged to the proposed design. The baseline building heating and cooling plant utilizes the backup energy source(s) of the proposed design. However, data provided by Monroe Community College and Siemens indicate an annual efficiency of about 57% so no credit was taken for the campus CHP system under EAc1.
Appendix A

Project Contact List
Appendix A

Project Contact List

Owner

Monroe County
50 West Main Street, Suite 7100
Rochester, NY 14614
Reinhard L. Gsellmeier, P.E., Associate Engineer
(585) 753-7541

Architect

SWBR Architects, P.C.
Eastman Place
387 East Main Street
Rochester, NY 14604
Randy Sickler
(585) 232-8300

MEP Engineer

M/E Engineering, P.C.
150 North Chestnut Street
Rochester, NY 14604
Brain L. Danker, P.E.
(585) 288-5590

NYSERDA Outreach Project Consultant

Sustainable Performance Consulting, Inc.
807 Ridge Road, Suite 206
Webster, NY 14580
Tammy Schickler
(585) 943-1500

NYSERDA Technical Assistant

SAIC
6390 Fly Road
East Syracuse, NY 13057
Mark R. McGuire, P.E.
Kristi Kezar
(315) 437-1869

NYSERDA Project Manager

NYSERDA
17 Columbia Circle
Albany, NY 12203
Charle-Pan A.R. Dawson
(518) 862-1090 ext. 3244
Appendix B

eQUEST/DOE-2.2 Output Reports for NYSERDA NCP Baseline Code-Compliant Building
Appendix C

Estimated Incremental Construction Costs and eQUEST/DOE-2.2 Output Reports for Proposed Design Building
INCREMENTAL CONSTRUCTION COST ESTIMATES
EQUEST/DOE-2.2 OUTPUT REPORTS
Appendix D

Regulated Energy Cost Savings Calculations for Entire Project and Each Individual Measure for NYSERDA NCP Analysis
Appendix E

Supporting Documentation for LEED® Energy and Atmosphere Credit 1
eQUEST/DOE-2.2 OUTPUT REPORTS FOR LEED BASELINE BUILDING
EQUEST/DOE-2.2 OUTPUT REPORTS FOR LEED DESIGN BUILDING
Appendix F

NYSERDA New Construction Program Worksheets
Information in this document was provided by the following sources:

SAIC Energy and Atmosphere Credit 1 LEED Submittal Documentation

• MCC Input for LEED Design Model
• MCC Input for LEED Baseline Model
• MCC Output for LEED Design Model
• MCC Output for LEED Baseline Model
Input for LEED Design Model
INPUT ..

$ ---------------------------------
$ Abort, Diagnostics
$ ---------------------------------

$ ---------------------------------
$ Global Parameters
$ ---------------------------------

$ ---------------------------------
$ Title, Run Periods, Design Days, Holidays
$ ---------------------------------

TITLE
 LINE-1 = *Monroe Community College*
 LINE-2 = *School of Nursing*
 LINE-3 = *NYSERDA NCP7190*
 LINE-4 = *LEED Design Building Model*
 LINE-5 = *SAIC/Energy Systems Group*
...

"Entire Year" = RUN-PERIOD-PD
 BEGIN-MONTH = 1
 BEGIN-DAY = 1
 BEGIN-YEAR = 2007
 END-MONTH = 12
 END-DAY = 31
 END-YEAR = 2007
...

"LMC Holidays" = HOLIDAYS
 TYPE = ALTERNATE
 MONTHS = (1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 5, 7, 9, 10,
 10, 11, 11, 11, 11, 11, 12)
 DAYS = (1, 15, 25, 26, 27, 28, 1, 2, 3, 5, 6, 7, 8, 9, 28, 4,
 3, 8, 9, 21, 22, 23, 24, 25)
...

$ ---------------------------------
$ Compliance Data
$ ---------------------------------

$ ---------------------------------
$ Site and Building Data
$ ---------------------------------
"SITE-PARAMETERS 1" = SITE-PARAMETERS
 TIME-ZONE = 5
 ..

"School of Nursing - Monroe Commu" = BUILD-PARAMETERS
 AZIMUTH = 95
 ..

$ ---
$ Materials / Layers / Constructions
$ ---

"UWMat R10" = MATERIAL
 TYPE = RESISTANCE
 RESISTANCE = 10
 ..

"UFMat R100" = MATERIAL
 TYPE = RESISTANCE
 RESISTANCE = 100
 ..

"MAT-FICT-1" = MATERIAL
 TYPE = RESISTANCE
 RESISTANCE = 28.53
 ..

"W-BRICK-LAYER" = LAYERS
 MATERIAL = ("Face Brick 4in (BK05)", "Air Lay <4in Vert (AL21)",
 "Polystyrene 3in (IN36)", "CMU MW 8in Hollow (CB31)")
 ..

"W-SPANDREL-LAYER" = LAYERS
 MATERIAL = ("1/4in Spandrel Glass", "Air Lay <4in Vert (AL21)",
 "Polystyrene 3in (IN36)", "GypBd 5/8in (GP02)")
 ..

"UF-TYP-LAYER" = LAYERS
 MATERIAL = ("MAT-FICT-1", "Conc LW 80lb 8in (CC26)",
 "Polystyrene 1/2in (IN31)", "Soil 12in")
 ..

"R-LAYER-TYP" = LAYERS
 MATERIAL = ("Rubber Tile (RT01)", "Polystyrene 3in (IN36)",
 "Polystyrene 3in (IN36)", "Plywd 3/4in (PW05)",
 "Steel Siding (AS01)", "Air Lay >4in Horiz (AL33)",
 "AcousTile 3/4in (AC03)")
 ..

"IW-TYP-LAYER" = LAYERS
 MATERIAL = ("GypBd 5/8in (GP02)", "Air Lay <4in Vert (AL21)",
 "GypBd 5/8in (GP02)")
 ..

"W-BRICK-CONS" = CONSTRUCTION
 TYPE = LAYERS
 LAYERS = "W-BRICK-LAYER"
 ..

"W-SPANDREL-CONS" = CONSTRUCTION
 TYPE = LAYERS
 LAYERS = "W-SPANDREL-LAYER"
"UF-TYP-CONS" = CONSTRUCTION
 TYPE = LAYERS
 LAYERS = "UF-TYP-LAYER"

"R-TYP-CONS" = CONSTRUCTION
 TYPE = LAYERS
 ABSORPTANCE = 0.55
 LAYERS = "R-LAYER-TYP"

"IW-TYP-CONS" = CONSTRUCTION
 TYPE = LAYERS
 LAYERS = "IW-TYP-LAYER"

Glass Type Codes

Glass Types

"TYP-GLASS-1" = GLASS-TYPE
 TYPE = GLASS-TYPE-CODE
 GLASS-TYPE-CODE = "2668"

"TYP-GLASS-2" = GLASS-TYPE
 TYPE = GLASS-TYPE-CODE
 GLASS-TYPE-CODE = "Perf Plus II Grn/Arg/Clr 6"

Window Layers

Lamps / Luminaries / Lighting Systems

Day Schedules

"OCC-OFC-WD-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0, &D, &D, &D, &D, &D, 0.15, 0.5, 0.9, 1, &D, 0.8, &D,
"OCC-OFC-SAT-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0, &D, &D, &D, &D, &D, &D, &D, 0.05, &D, &D, &D, 0)

"OCC-OFC-SUN-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0)

"OCC-CLASS-WD-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0, &D, &D, &D, &D, &D, &D, 0.15, 0.5, 1, 0.75, 0.5,
 0.5, 1, 0.75, 0.25, &D, 0.1, 0.4, &D, 0.15, 0.05, 0)

"OCC-CLASS-SAT-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0, &D, &D, &D, &D, &D, &D, &D, 0.05, &D, &D, &D, 0)

"OCC-CLASS-SUN-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0)

"OCC-COR-WD-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0, &D, &D, &D, &D, &D, 0.05, 0.3, 0.5, 1, &D, &D, &D, &D,
 &D, 0.5, 0.3, &D, 0.1, &D, 0)

"OCC-COR-SAT-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0, &D, &D, &D, &D, &D, &D, &D, &D, &D, 0.02, &D, &D, &D, &D, 0)

"OCC-COR-SUN-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0)

"OCC-MECH-WD-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0, &D, &D,
 1, 0, &D, &D, &D, &D, &D, &D, &D, &D, &D, 1, 0, &D, &D, 1, 0)

"OCC-MECH-WEH-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0)

"OCC-STO-WD-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0, &D, &D,
 1, 0)

"OCC-STO-WEH-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0)

"LITE-OFC-WD-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0, &D, &D, &D, &D, &D, 0.05, 0.5, 0.9, 1, &D, 0.9,
0.9, 1, &D, &D, 0.7, 0.1, 0.05, &D, &D, &D, 0)

"LITE-OFC-SAT-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0, &D, &D, &D, &D, &D, 0.1, &D, &D, &D, 0)

"LITE-OFC-SUN-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0)

"LITE-CLASS-WD-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0, &D, &D, &D, &D, &D, 0.3, 0.6, 1, &D, 0.7, 0.7, 1, &D, 0.7, 0.5, 0.3, &D, &D, 0.15, 0)

"LITE-CLASS-SAT-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0, &D, &D, &D, &D, &D, &D, 0.05, &D, &D, &D, 0)

"LITE-CLASS-SUN-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0)

"LITE-COR-WD-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.02, &D, &D, &D, &D, 1, &D, &D, &D, &D, &D, &D, &D, &D, 0.02)

"LITE-COR-SAT-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.02, &D, &D, &D, &D, 1, &D, &D, &D, &D, &D, &D, &D, 0.02)

"LITE-COR-SUN-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.02, &D, 0.02)

"LITE-MECH-WD-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.02, &D, &D, &D, &D, &D, &D, &D, &D, &D, 1, 0, &D, 1, 0)

"LITE-MECH-WEH-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.02)

"LITE-STO-WD-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.02, &D, &D, &D, &D, &D, &D, 1, &D, &D, &D, 1, 0, &D, 1, 0)

"LITE-STO-WEH-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.02)

"EQP-OFC-WD-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0.05, &D, &D, &D, 0.5, 1, 1)

"EQP-OFC-SAT-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0.05, &D, &D, &D, &D, &D, &D, &D, 1)

"EQP-OFC-SUN-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0.05, &D, &D, &D, &D, &D, &D, &D, 1, &D, &D, &D, 0.05)

"EQP-CLASS-WD-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0.05, &D, &D, &D, &D, 0.5, 1, 1)

"EQP-CLASS-SAT-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0.05, &D, &D, &D, &D, &D, 1)

"EQP-CLASS-SUN-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0.05, &D, &D, &D, &D, &D, &D, &D, 1, &D, &D, &D, 0.05)

"EQP-COR-WD-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0.05, &D, &D, &D, &D, 0.05, 0.3, 0.5, 1, &D, &D, &D, &D, &D, 0.3, 0.5, 1, &D, 0.1, &D, 0)

"EQP-COR-SAT-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0.05, &D, &D, &D, &D, &D, &D, 0.02, &D, &D, &D, 0)

"EQP-COR-SUN-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0.05)

"EQP-MECH-WD-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0.05, &D, &D, &D, &D, &D, &D, &D, &D, &D, 1, 0, &D, &D, 1, 0)

"EQP-MECH-WEH-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0.05)

"EQP-STO-WD-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0.05, &D, &D, &D, &D, &D, &D, &D, &D, &D, 1, 0, &D, &D, 1, 0)

"EQP-STO-WEH-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0.05)

"HTG-OFC-WD-SCH" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE
VALUES = (64, &D, &D, &D, &D, 70, &D, &D, &D, &D, &D, &D, &D, &D, &D,
"HTG-OFC-SAT-SCH" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE
VALUES = (64, &D, &D, &D, &D, 70, &D, 64)

"HTG-OFC-SUN-SCH" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE
VALUES = (64, &D, &D, &D, &D, 70, &D, 64)

"HTG-CLASS-WD-SCH" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE
VALUES = (64, &D, &D, &D, &D, 70, &D, 64)

"HTG-CLASS-SAT-SCH" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE
VALUES = (64, &D, &D, &D, &D, 70, &D, 64)

"HTG-CLASS-SUN-SCH" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE
VALUES = (64, &D, &D, &D, &D, 70, &D, 64)

"HTG-COR-WD-SCH" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE
VALUES = (64, &D, &D, &D, &D, 70, &D, 64)

"HTG-COR-SAT-SCH" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE
VALUES = (64, &D, &D, &D, &D, 70, &D, 64)

"HTG-COR-SUN-SCH" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE
VALUES = (64, &D, &D, &D, &D, 70, &D, 64)

"HTG-MECH-WD-SCH" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE
VALUES = (64)

"HTG-MECH-WEH-SCH" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE
VALUES = (64)

"HTG-STO-WD-SCH" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE
VALUES = (64)

"HTG-STO-WEH-SCH" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE
VALUES = (64)
<table>
<thead>
<tr>
<th>Day</th>
<th>Schedule</th>
<th>Type</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLG-OFC-WD-SCH</td>
<td>DAY-SCHEDULE-PD</td>
<td>TEMPERATURE</td>
<td>(82, &D, &D, &D, &D, 75, &D, 82)</td>
</tr>
<tr>
<td>CLG-OFC-SAT-SCH</td>
<td>DAY-SCHEDULE-PD</td>
<td>TEMPERATURE</td>
<td>(82, &D, &D, &D, &D, 75, &D, 82)</td>
</tr>
<tr>
<td>CLG-CLASS-WD-SCH</td>
<td>DAY-SCHEDULE-PD</td>
<td>TEMPERATURE</td>
<td>(82, &D, &D, &D, &D, 75, &D, 82)</td>
</tr>
<tr>
<td>CLG-CLASS-SAT-SCH</td>
<td>DAY-SCHEDULE-PD</td>
<td>TEMPERATURE</td>
<td>(82, &D, &D, &D, &D, 75, &D, 82)</td>
</tr>
<tr>
<td>CLG-CLASS-SUN-SCH</td>
<td>DAY-SCHEDULE-PD</td>
<td>TEMPERATURE</td>
<td>(82, &D, &D, &D, &D, 75, &D, 82)</td>
</tr>
<tr>
<td>CLG-COR-WD-SCH</td>
<td>DAY-SCHEDULE-PD</td>
<td>TEMPERATURE</td>
<td>(82, &D, &D, &D, &D, 75, &D, 82)</td>
</tr>
<tr>
<td>CLG-COR-SAT-SCH</td>
<td>DAY-SCHEDULE-PD</td>
<td>TEMPERATURE</td>
<td>(82, &D, &D, &D, &D, 75, &D, 82)</td>
</tr>
<tr>
<td>CLG-COR-SUN-SCH</td>
<td>DAY-SCHEDULE-PD</td>
<td>TEMPERATURE</td>
<td>(82, &D, &D, &D, &D, 75, &D, 82)</td>
</tr>
<tr>
<td>CLG-MECH-WD-SCH</td>
<td>DAY-SCHEDULE-PD</td>
<td>TEMPERATURE</td>
<td>(82)</td>
</tr>
<tr>
<td>CLG-MECH-WEH-SCH</td>
<td>DAY-SCHEDULE-PD</td>
<td>TEMPERATURE</td>
<td>(82)</td>
</tr>
<tr>
<td>CLG-STO-WD-SCH</td>
<td>DAY-SCHEDULE-PD</td>
<td>TEMPERATURE</td>
<td>(82)</td>
</tr>
</tbody>
</table>
"CLG-STO-WEH-SCH" = DAY-SCHEDULE-PD
 TYPE = TEMPERATURE
 VALUES = (82)

"FAN-ALL-ALL-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (1)

"INF-ALL-WD-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (1)

"INF-ALL-SAT-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (1)

"INF-ALL-SUN-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (1)

"HTG_AVAIL-ALL-ALL-SCH" = DAY-SCHEDULE-PD
 TYPE = ON/OFF
 VALUES = (1)

"CLG_AVAIL-ALL-ALL-SCH" = DAY-SCHEDULE-PD
 TYPE = ON/OFF
 VALUES = (1)

"OAD-OFC-M_TH-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.1, &D, &D, &D, &D, 0.3, 0.8, 1, &D, 0.5, &D, &D, &D, &D, 0.8, &D, &D, &D, &D, 0.1)

"OAD-OFC-FRI-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.1, &D, &D, &D, &D, 0.3, 0.8, 1, &D, &D, &D, &D, &D, &D, &D, &D, &D, 0.1)

"OAD-OFC-SAT-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.1, &D, &D, &D, &D, 0.2, 0.7, 0.9, &D, &D, &D, &D, 0.1, &D, &D, &D, &D, 0.1)

"OAD-OFC-SUN-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.1)

"OAD-CLASS-M_TH-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.1, &D, &D, &D, &D, 0.3, 0.8, 1, &D, 0.8, &D, &D, &D, &D, 0.1)

"OAD-CLASS-FRI-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.1, &D, &D, &D, &D, 0.3, 0.8, 1, &D, &D, &D, &D, &D, &D, &D, &D, &D, 0.5, &D, &D, &D, &D, 0.1)
"OAD-CLASS-SAT-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.1, &D, &D, &D, &D, 0.2, 0.7, 0.9, &D, &D, &D,
 &D, 0.3, &D, &D, &D, &D, &D, &D, &D, &D, &D, 0.1)

"OAD-CLASS-SUN-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.1, &D, &D, &D, &D, &D, 0.2, &D, &D, &D, &D,
 &D, &D, &D, &D, &D, 0.3, &D, &D, &D, &D, &D, &D, 0.1)

"OAD-COR-M_TH-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.1, &D, &D, &D, &D, 0.3, 0.8, 1, &D, &D, &D, &D,
 &D, &D, &D, 0.8, &D, &D, 0.1)

"OAD-COR-FRI-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.1, &D, &D, &D, &D, 0.3, 0.8, 1, &D, &D, &D, &D,
 &D, &D, 0.5, &D, &D, &D, 0.1)

"OAD-COR-SAT-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.1, &D, &D, &D, &D, 0.2, 0.7, 0.9, &D, &D, &D,
 &D, &D, &D, &D, &D, &D, &D, &D, &D, 0.1)

"OAD-COR-SUN-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.1, &D, &D, &D, &D, 0.2, 0.7, 0.9, &D, &D, &D,
 &D, &D, &D, &D, &D, &D, 0.1)

"OAD-MECH-M_TH-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.1, &D, &D, &D, &D, 0.7, &D, &D, &D, &D, &D,
 &D, &D, &D, &D, 0.1)

"OAD-MECH-FRI-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.1, &D, &D, &D, &D, 0.7, &D, &D, &D, &D, &D,
 &D, &D, &D, &D, 0.1)

"OAD-MECH-SAT-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.1, &D, &D, &D, &D, &D, &D, &D, &D, &D, &D,
 &D, &D, 0.1)

"OAD-MECH-SUN-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.1)

"OAD-STO-M_TH-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.1)

"OAD-STO-FRI-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0)

"OAD-STO-SAT-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0)

"OAD-STO-SUN-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0)
"OAD-STO-SAT-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0)

"OAD-STO-SUN-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0)

"LITE-OFC-WD-OCCSEN-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0, &D, &D, &D, &D, &D, 0.05, 0.3, 0.6, 0.7, &D, 0.5,
&D, 0.7, &D, &D, 0.4, 0.1, 0.05, 0)

"LITE-CLASS-WD-OCCSEN-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0, &D, &D, &D, &D, &D, &D, 0.3, 0.5, 0.9, &D, 0.5, &D,
&D, 0.9, &D, 0.5, 0.2, 0.1, 0.05, 0)

"FAN-WD-TYP" = DAY-SCHEDULE-PD
TYPE = ON/OFF
VALUES = (0, &D, &D, &D, &D, &D, 1, 1, &D, &D, &D, &D, &D, &D,
&D, &D, &D, &D, &D, &D, &D, &D, &D, 0)

"FAN-SAT-TYP" = DAY-SCHEDULE-PD
TYPE = ON/OFF
VALUES = (0, &D, &D, &D, &D, &D, 1, &D, &D, &D, &D, &D, &D, &D,
&D, &D, &D, &D, &D, &D, &D, &D, &D, &D, 0)

"FAN-SUN-TYP" = DAY-SCHEDULE-PD
TYPE = ON/OFF
VALUES = (0, &D, &D, &D, &D, &D, &D, 1, &D, &D, &D, &D, &D, &D,
&D, &D, &D, &D, &D, &D, &D, &D, &D, &D, 0)

"OA-ALL-WD-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0, &D, &D, &D, &D, &D, 0.15, 0.25, 0.75, 1, &D, 0.75,
&D, 1, &D, &D, 0.4, &D, 0.5, &D, &D, &D, 0)

"OA-ALL-SAT-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0, &D, &D, &D, &D, &D, 0.05, &D, &D, &D, &D, 0)

"OA-ALL-SUN-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0)

"DHW-SAT-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0, &D, &D, &D, &D, &D, 0.05, &D, &D, &D, &D, &D, &D,
&D, &D, &D, &D, &D, &D, 0)

"DHW-SUN-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0)

"DHW-WD-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
<table>
<thead>
<tr>
<th>Variable</th>
<th>Type</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>MINFLOW-OF - WD-SCH</td>
<td>FRACTION</td>
<td>(0.4, &D, &D, &D, &D, &D, 0.1, 0.2, 0.3, 0.4, &D, &D, 0.3, 0.4, &D, &D, &D, &D, 0.1, 0.4, &D, &D, &D, &D, &D, 0.3, 0.4, &D, &D, &D, &D, &D, 0.1, 0.4)</td>
</tr>
<tr>
<td>MINFLOW-OF - SAT-SCH</td>
<td>FRACTION</td>
<td>(0.4, &D, &D, &D, &D, &D, 0.1, 0.4, &D, &D, &D, &D, &D, 0.1, 0.4, &D, &D, &D, &D, &D, 0.1, 0.4)</td>
</tr>
<tr>
<td>MINFLOW-OF - SUN-SCH</td>
<td>FRACTION</td>
<td>(0.4)</td>
</tr>
<tr>
<td>ELE-WD-FLAG</td>
<td>FLAG</td>
<td>(1.2, &D, &D, &D, &D, &D, 1.1, &D, 1.2)</td>
</tr>
<tr>
<td>ELE-WE-FLAG</td>
<td>FLAG</td>
<td>(1.2)</td>
</tr>
<tr>
<td>HTG_AVAIL- NOT- ALL-SCH</td>
<td>ON/OFF</td>
<td>(0)</td>
</tr>
<tr>
<td>HTG_AVAIL- TEMP- SCH</td>
<td>TEMPERATURE</td>
<td>(65)</td>
</tr>
<tr>
<td>EXT-LITE- WINTER</td>
<td>FRACTION</td>
<td>(1, &D, &D, &D, &D, &D, &D, 0, &D, 1)</td>
</tr>
<tr>
<td>EXT-LITE- SWING</td>
<td>FRACTION</td>
<td>(1, &D, &D, &D, &D, &D, 0, &D, 1)</td>
</tr>
<tr>
<td>EXT-LITE- SUMMER</td>
<td>FRACTION</td>
<td>(1, &D, &D, &D, &D, &D, 0, &D, 1)</td>
</tr>
<tr>
<td>HTG-OFC- WD- SCH- VAVOCC</td>
<td>TEMPERATURE</td>
<td>(64, &D, &D, &D, &D, 70, &D, &D, &D, &D, &D, 67, &D, 70, &D, &D, &D, &D, &D, &D, 64)</td>
</tr>
</tbody>
</table>
| HTG-OFC- SAT- SCH- VAVOCC | TEMPERATURE | (64, &D, &D, &D, &D, 70, &D, &D, &D, &D, &D, &D, &D, 67, &D, 70, &D, &D, &D, &D, &D, 67, &D,
"HTG-OFC-SUN-SCH-VAVOCC" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE
VALUES = (64, &D, 64)

"HTG-CLASS-WD-SCH-VAVOCC" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE
VALUES = (64, &D, &D, &D, &D, 70, &D, &D, &D, &D, &D, 64, &D, 70, &D, &D, 64, &D, 70, &D, 64)

"HTG-CLASS-SAT-SCH-VAVOCC" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE
VALUES = (64, &D, &D, &D, 70, &D, 64)

"HTG-CLASS-SUN-SCH-VAVOCC" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE
VALUES = (64, &D, 64)

"CLG-OFC-WD-SCH-VAVOCC" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE
VALUES = (82, &D, &D, &D, 75, &D, &D, &D, &D, &D, 78.5, &D, 75, &D, &D, 78.5, &D, 75, &D, 82)

"CLG-OFC-SAT-SCH-VAVOCC" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE
VALUES = (82, &D, &D, &D, 75, &D, &D, &D, &D, &D, &D, 78.5, &D, 75, &D, &D, 78.5, &D, 75, &D, 82)

"CLG-OFC-SUN-SCH-VAVOCC" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE
VALUES = (82, &D, &D, &D, 75, &D, 82)

"CLG-OFC-WD-SCH-VAVMIN" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0.4, &D, &D, &D, &D, 0.4, &D, &D, &D, &D, &D, 0.2, &D, 0.4, &D, &D, 0.4, &D, &D, 0.4)
"HTG-OFC-SAT-SCH-VAVMIN" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0.4, &D, &D, &D, 0.4, &D, &D, 0.2, &D,
 0.4, &D, 0.4)
..
"HTG-OFC-SUN-SCH-VAVMIN" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0.4, &D, &D,
 &D, &D, &D, &D, &D, &D, &D, &D, &D, 0.4)
..
"HTG-CLASS-WD-SCH-VAVMIN" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0.4, &D, &D, &D, 0.4, &D, &D, &D, &D, &D, 0.2, &D,
 0.4, &D, &D, &D, &D, &D, 0.4, &D, 0.4)
..
"HTG-CLASS-SAT-SCH-VAVMIN" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0.4, &D, &D, &D, 0.4, &D, &D, &D, &D, &D, &D, &D, &D,
 &D, &D, &D, &D, &D, &D, &D, 0.4)
..
"HTG-CLASS-SUN-SCH-VAVMIN" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0.4, &D, &D,
 &D, &D, &D, &D, &D, &D, 0.4)
..
"CLG-OFC-WD-SCH-VAVMIN" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0.4, &D, &D, &D, &D, 0.4, &D, &D, &D, &D, &D, &D, &D,
 &D, &D, &D, &D, &D, &D, 0.4, &D, 0.4)
..
"CLG-OFC-SAT-SCH-VAVMIN" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0.4, &D, &D, &D, &D, 0.4, &D, &D, &D, &D, &D, &D, &D,
 &D, &D, &D, &D, &D, &D, &D, &D, 0.4)
..
"CLG-OFC-SUN-SCH-VAVMIN" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0.4, &D, &D,
 &D, &D, 0.4, &D, 0.4, &D, 0.4)
..
"CLG-CLASS-WD-SCH-VAVMIN" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0.4, &D, &D, &D, 0.4, &D, &D, &D, &D, &D, &D, 0.2, &D,
 0.4, &D, &D, &D, &D, &D, 0.4, &D, 0.4)
..
"CLG-CLASS-SAT-SCH-VAVMIN" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0.4, &D, &D, &D, 0.4, &D, &D, &D, &D, &D, &D, &D, &D,
 &D, &D, &D, 0.2, &D, 0.4, &D, 0.4)
..
"CLG-CLASS-SUN-SCH-VAVMIN" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0.4, &D, &D,
 &D, &D, &D, &D, &D, 0.4)
..
"HTG-OFC-WD-SCH-VAVOCC2" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE
VALUES = (64, &D, &D, &D, &D, 70, &D, &D, &D, &D, &D, &D, &D, &D, 67, &D, 70, &D, &D, &D, &D, &D, &D, &D, 64)

"HTG-OFC-SAT-SCH-VAVOCC2" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE
VALUES = (64, &D, &D, &D, &D, 70, &D, &D, &D, &D, &D, &D, &D, &D, 67, &D, &D, &D, &D, &D, &D, &D, &D, 64)

"HTG-OFC-SUN-SCH-VAVOCC2" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE
VALUES = (64, &D, &D, &D, &D, &D, &D, 64, &D, 70, &D, 64)

"HTG-CLASS-WD-SCH-VAVOCC2" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE
VALUES = (64, &D, &D, &D, &D, 70, &D, &D, &D, &D, &D, 64, &D, 70, &D, &D, &D, 64, &D, 70, &D, 64)

"HTG-CLASS-SAT-SCH-VAVOCC2" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE
VALUES = (64, &D, &D, &D, &D, 70, &D, &D, &D, &D, &D, 64, &D, 70, &D, &D, &D, 64, &D, 70, &D, 64)

"HTG-CLASS-SUN-SCH-VAVOCC2" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE
VALUES = (64, &D, 64)

"CLG-OFC-WD-SCH-VAVOCC2" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE
VALUES = (82, &D, &D, &D, &D, 75, &D, &D, &D, &D, &D, &D, &D, &D, 78.5, &D, &D, &D, &D, &D, &D, 78.5, &D, 82)

"CLG-OFC-SAT-SCH-VAVOCC2" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE
VALUES = (82, &D, &D, &D, &D, 75, &D, &D, &D, &D, &D, &D, &D, &D, 78.5, &D, &D, &D, &D, &D, &D, 78.5, &D, 82)

"CLG-OFC-SUN-SCH-VAVOCC2" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE
VALUES = (82, &D, 82)

"CLG-CLASS-WD-SCH-VAVOCC2" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE
VALUES = (82, &D, &D, &D, &D, 75, &D, &D, &D, &D, &D, 82, &D, 75, &D, &D, &D, 82, &D, 75, &D, 82)

"CLG-CLASS-SAT-SCH-VAVOCC2" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE
VALUES = (82, &D, 82)

"CLG-CLASS-SUN-SCH-VAVOCC2" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE
VALUES = (82, &D, 82)
"HTG-OFC-WD-SCH-VAVMIN2" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.4, &D, &D, &D, &D, 0.4, &D, &D, &D, &D, 0.4, &D, 0.2, &D, 0.4, &D, &D, &D, &D, &D, &D, &D, &D, &D, 0.4)

"HTG-OFC-SAT-SCH-VAVMIN2" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.4, &D, &D, &D, &D, 0.4, &D, &D, &D, &D, &D, &D, 0.2, &D, 0.4, &D, &D, &D, 0.2, &D, 0.4)

"HTG-OFC-SUN-SCH-VAVMIN2" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.4, &D, 0.2, &D, 0.4, &D, &D, &D, 0.2, &D, 0.4)

"HTG-CLASS-WD-SCH-VAVMIN2" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.4, &D, &D, &D, &D, 0.4, &D, &D, &D, &D, 0.2, &D, 0.4, 0.4, &D, &D, &D, 0.2, &D, 0.4, 0.4, &D, &D, &D, 0.2, &D, 0.4)

"HTG-CLASS-SAT-SCH-VAVMIN2" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.4, &D, &D, &D, &D, 0.4, &D, &D, &D, &D, &D, &D, 0.2, 0.4, &D, &D, &D, 0.2, 0.4, &D, &D, 0.2, 0.4)

"HTG-CLASS-SUN-SCH-VAVMIN2" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.4, &D, 0.2, &D, 0.4, &D, &D, &D, 0.2, &D, 0.4)

"CLG-OFC-WD-SCH-VAVMIN2" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.4, &D, &D, &D, &D, 0.4, &D, &D, &D, &D, 0.4, &D, 0.4, &D, &D, &D, 0.4, &D, 0.4)

"CLG-OFC-SAT-SCH-VAVMIN2" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.4, &D, &D, &D, &D, 0.4, &D, &D, &D, &D, &D, 0.4, 0.4, &D, &D, &D, 0.4, 0.4, &D, &D, 0.4, 0.4)

"CLG-OFC-SUN-SCH-VAVMIN2" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.2)

"CLG-CLASS-WD-SCH-VAVMIN2" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.4, &D, &D, &D, 0.2, &D, 0.4, &D, &D, &D, 0.2, &D, 0.4, &D, &D, 0.2, &D, 0.4)

"CLG-CLASS-SAT-SCH-VAVMIN2" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.4, &D, &D, &D, &D, 0.4, &D, &D, &D, &D, &D, 0.2, &D, 0.4, &D, &D, &D, 0.2, &D, 0.4, &D, &D, 0.2, &D, 0.4)

"CLG-CLASS-SUN-SCH-VAVMIN2" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.4, &D, &D, &D, 0.4, 0.4, &D, &D, &D, 0.4, &D, &D, 0.4, &D, &D, 0.4)
VALUES = (0.4, &D, 0.4)

$---$
$ Week Schedules
$---$

"OCC-OFC-TYP-WEEK" = WEEK-SCHEDULE-PD
 TYPE = FRACTION

"OCC-OFC-VAC-WEEK" = WEEK-SCHEDULE-PD
 TYPE = FRACTION
 DAY-SCHEDULES = ("OCC-OFC-SUN-SCH")

"OCC-CLASS-TYP-WEEK" = WEEK-SCHEDULE-PD
 TYPE = FRACTION

"OCC-CLASS-VAC-WEEK" = WEEK-SCHEDULE-PD
 TYPE = FRACTION
 DAY-SCHEDULES = ("OCC-CLASS-SUN-SCH")

"OCC-COR-TYP-WEEK" = WEEK-SCHEDULE-PD
 TYPE = FRACTION

"OCC-COR-VAC-WEEK" = WEEK-SCHEDULE-PD
 TYPE = FRACTION
 DAY-SCHEDULES = ("OCC-COR-SUN-SCH")

"OCC-MECH-TYP-WEEK" = WEEK-SCHEDULE-PD
 TYPE = FRACTION
 DAY-SCHEDULES = ("OCC-MECH-WD-SCH", &D, &D, &D, &D, "OCC-MECH-WEH-SCH")

"OCC-MECH-VAC-WEEK" = WEEK-SCHEDULE-PD
 TYPE = FRACTION
 DAY-SCHEDULES = ("OCC-MECH-WEH-SCH")

"OCC-STO-TYP-WEEK" = WEEK-SCHEDULE-PD
 TYPE = FRACTION
 DAY-SCHEDULES = ("OCC-STO-WD-SCH", &D, &D, &D, &D, "OCC-STO-WEH-SCH")

"OCC-STO-VAC-WEEK" = WEEK-SCHEDULE-PD
 TYPE = FRACTION
 DAY-SCHEDULES = ("OCC-STO-WEH-SCH")

"LITE-OFC-TYP-WEEK" = WEEK-SCHEDULE-PD
 TYPE = FRACTION
 DAY-SCHEDULES = ("LITE-OFC-WD-SCH", &D, &D, &D, &D, "LITE-OFC-SAT-SCH", "LITE-OFC-SUN-SCH")

"LITE-OFC-VAC-WEEK" = WEEK-SCHEDULE-PD
TYPE = FRACTION
DAY-SCHEDULES = ("LITE-OFC-SUN-SCH")

"LITE-CLASS-TYP-WEEK" = WEEK-SCHEDULE-PD
TYPE = FRACTION
DAY-SCHEDULES = ("LITE-CLASS-WD-SCH", &D, &D, &D, &D, "LITE-CLASS-SAT-SCH", "LITE-CLASS-SUN-SCH")

"LITE-CLASS-VAC-WEEK" = WEEK-SCHEDULE-PD
TYPE = FRACTION
DAY-SCHEDULES = ("LITE-CLASS-SUN-SCH")

"LITE-COR-TYP-WEEK" = WEEK-SCHEDULE-PD
TYPE = FRACTION
DAY-SCHEDULES = ("LITE-COR-WD-SCH", &D, &D, &D, &D, "LITE-COR-SAT-SCH", "LITE-COR-SUN-SCH")

"LITE-COR-VAC-WEEK" = WEEK-SCHEDULE-PD
TYPE = FRACTION
DAY-SCHEDULES = ("LITE-COR-SUN-SCH")

"LITE-MECH-TYP-WEEK" = WEEK-SCHEDULE-PD
TYPE = FRACTION
DAY-SCHEDULES = ("LITE-MECH-WD-SCH", &D, &D, &D, &D, "LITE-MECH-WEH-SCH")

"LITE-MECH-VAC-WEEK" = WEEK-SCHEDULE-PD
TYPE = FRACTION
DAY-SCHEDULES = ("LITE-MECH-WEH-SCH")

"LITE-STO-TYP-WEEK" = WEEK-SCHEDULE-PD
TYPE = FRACTION
DAY-SCHEDULES = ("LITE-STO-WD-SCH", &D, &D, &D, &D, "LITE-STO-WEH-SCH")

"LITE-STO-VAC-WEEK" = WEEK-SCHEDULE-PD
TYPE = FRACTION
DAY-SCHEDULES = ("LITE-STO-WEH-SCH")

"EQP-OFC-TYP-WEEK" = WEEK-SCHEDULE-PD
TYPE = FRACTION

"EQP-OFC-VAC-WEEK" = WEEK-SCHEDULE-PD
TYPE = FRACTION
DAY-SCHEDULES = ("EQP-OFC-SUN-SCH")

"EQP-CLASS-TYP-WEEK" = WEEK-SCHEDULE-PD
TYPE = FRACTION
DAY-SCHEDULES = ("EQP-CLASS-WD-SCH", &D, &D, &D, &D, "EQP-CLASS-SAT-SCH", "EQP-CLASS-SUN-SCH")

"EQP-CLASS-VAC-WEEK" = WEEK-SCHEDULE-PD
TYPE = FRACTION
DAY-SCHEDULES = ("EQP-CLASS-SUN-SCH")

"EQP-COR-TYP-WEEK" = WEEK-SCHEDULE-PD
TYPE = FRACTION
DAY-SCHEDULES = ("EQP-COR-WD-SCH", &D, &D, &D, &D, "EQP-COR-SAT-SCH",
 "EQP-COR-SUN-SCH")

"EQP-COR-VAC-WEEK" = WEEK-SCHEDULE-PD
TYPE = FRACTION
DAY-SCHEDULES = ("EQP-COR-SUN-SCH")

"EQP-MECH-TYP-WEEK" = WEEK-SCHEDULE-PD
TYPE = FRACTION
DAY-SCHEDULES = ("EQP-MECH-WD-SCH", &D, &D, &D, &D, "EQP-MECH-WEH-SCH")

"EQP-MECH-VAC-WEEK" = WEEK-SCHEDULE-PD
TYPE = FRACTION
DAY-SCHEDULES = ("EQP-MECH-WEH-SCH")

"EQP-STO-TYP-WEEK" = WEEK-SCHEDULE-PD
TYPE = FRACTION
DAY-SCHEDULES = ("EQP-STO-WD-SCH", &D, &D, &D, &D, "EQP-STO-WEH-SCH")

"EQP-STO-VAC-WEEK" = WEEK-SCHEDULE-PD
TYPE = FRACTION
DAY-SCHEDULES = ("EQP-STO-WEH-SCH")

"HTG-OFC-TYP-WEEK" = WEEK-SCHEDULE-PD
TYPE = TEMPERATURE
DAY-SCHEDULES = ("HTG-OFC-WD-SCH", &D, &D, &D, &D, "HTG-OFC-SAT-SCH",
 "HTG-OFC-SUN-SCH")

"HTG-OFC-VAC-WEEK" = WEEK-SCHEDULE-PD
TYPE = TEMPERATURE
DAY-SCHEDULES = ("HTG-OFC-SUN-SCH")

"HTG-CLASS-TYP-WEEK" = WEEK-SCHEDULE-PD
TYPE = TEMPERATURE
DAY-SCHEDULES = ("HTG-CLASS-WD-SCH", &D, &D, &D, &D, "HTG-CLASS-SAT-SCH",
 "HTG-CLASS-SUN-SCH")

"HTG-CLASS-VAC-WEEK" = WEEK-SCHEDULE-PD
TYPE = TEMPERATURE
DAY-SCHEDULES = ("HTG-CLASS-SUN-SCH")

"HTG-COR-TYP-WEEK" = WEEK-SCHEDULE-PD
TYPE = TEMPERATURE
DAY-SCHEDULES = ("HTG-COR-WD-SCH", &D, &D, &D, &D, "HTG-COR-SAT-SCH",
 "HTG-COR-SUN-SCH")

"HTG-COR-VAC-WEEK" = WEEK-SCHEDULE-PD
TYPE = TEMPERATURE
DAY-SCHEDULES = ("HTG-COR-SUN-SCH")

"HTG-MECH-TYP-WEEK" = WEEK-SCHEDULE-PD
TYPE = TEMPERATURE
DAY-SCHEDULES = ("HTG-MECH-WD-SCH", &D, &D, &D, &D, "HTG-MECH-WEH-SCH")

"HTG-MECH-VAC-WEEK" = WEEK-SCHEDULE-PD
TYPE = TEMPERATURE
DAY-SCHEDULES = ("HTG-MECH-WEH-SCH")

"HTG-STO-TYP-WEEK" = WEEK-SCHEDULE-PD
 TYPE = TEMPERATURE
 DAY-SCHEDULES = ("HTG-STO-WD-SCH", &D, &D, &D, &D, "HTG-STO-WEH-SCH")

"HTG-STO-VAC-WEEK" = WEEK-SCHEDULE-PD
 TYPE = TEMPERATURE
 DAY-SCHEDULES = ("HTG-STO-WEH-SCH")

"CLG-OFC-TYP-WEEK" = WEEK-SCHEDULE-PD
 TYPE = TEMPERATURE

"CLG-OFC-VAC-WEEK" = WEEK-SCHEDULE-PD
 TYPE = TEMPERATURE
 DAY-SCHEDULES = ("CLG-OFC-SUN-SCH")

"CLG-CLASS-TYP-WEEK" = WEEK-SCHEDULE-PD
 TYPE = TEMPERATURE
 DAY-SCHEDULES = ("CLG-CLASS-WD-SCH", &D, &D, &D, &D, "CLG-CLASS-SAT-SCH", "CLG-CLASS-SUN-SCH")

"CLG-CLASS-VAC-WEEK" = WEEK-SCHEDULE-PD
 TYPE = TEMPERATURE
 DAY-SCHEDULES = ("CLG-CLASS-SUN-SCH")

"CLG-COR-TYP-WEEK" = WEEK-SCHEDULE-PD
 TYPE = TEMPERATURE
 DAY-SCHEDULES = ("CLG-COR-WD-SCH", &D, &D, &D, &D, "CLG-COR-SAT-SCH", "CLG-COR-SUN-SCH")

"CLG-COR-VAC-WEEK" = WEEK-SCHEDULE-PD
 TYPE = TEMPERATURE
 DAY-SCHEDULES = ("CLG-COR-SUN-SCH")

"CLG-MECH-TYP-WEEK" = WEEK-SCHEDULE-PD
 TYPE = TEMPERATURE
 DAY-SCHEDULES = ("CLG-MECH-WD-SCH", &D, &D, &D, &D, "CLG-MECH-WEH-SCH")

"CLG-MECH-VAC-WEEK" = WEEK-SCHEDULE-PD
 TYPE = TEMPERATURE
 DAY-SCHEDULES = ("CLG-MECH-WEH-SCH")

"CLG-STO-TYP-WEEK" = WEEK-SCHEDULE-PD
 TYPE = TEMPERATURE
 DAY-SCHEDULES = ("CLG-STO-WD-SCH", &D, &D, &D, &D, "CLG-STO-WEH-SCH")

"CLG-STO-VAC-WEEK" = WEEK-SCHEDULE-PD
 TYPE = TEMPERATURE
 DAY-SCHEDULES = ("CLG-STO-WEH-SCH")

"FAN-ALL-ALL-WEEK" = WEEK-SCHEDULE-PD
 TYPE = FRACTION
 DAY-SCHEDULES = ("FAN-ALL-ALL-SCH")
"INF-ALL-ALL-WEEK" = WEEK-SCHEDULE-PD
 TYPE = FRACTION
 DAY-SCHEDULES = ("INF-ALL-WD-SCH", &D, &D, &D, "INF-ALL-SAT-SCH",
 "INF-ALL-SUN-SCH")

"HTG_AVAIL-ALL-ALL-WEEK" = WEEK-SCHEDULE-PD
 TYPE = ON/OFF
 DAY-SCHEDULES = ("HTG_AVAIL-ALL-ALL-SCH")

"CLG_AVAIL-ALL-ALL-WEEK" = WEEK-SCHEDULE-PD
 TYPE = ON/OFF
 DAY-SCHEDULES = ("CLG_AVAIL-ALL-ALL-SCH")

"OAD-OF C-ALL-WEEK" = WEEK-SCHEDULE-PD
 TYPE = FRACTION
 DAY-SCHEDULES = ("OAD-OF C-M_TH-SCH", &D, &D, &D, "OAD-OF C-FRI-SCH",
 "OAD-OF C-SAT-SCH", "OAD-OF C-SUN-SCH")

"OAD-CLASS-ALL-WEEK" = WEEK-SCHEDULE-PD
 TYPE = FRACTION
 DAY-SCHEDULES = ("OAD-CLASS-M_TH-SCH", &D, &D, &D, "OAD-CLASS-FRI-SCH",
 "OAD-CLASS-SAT-SCH", "OAD-CLASS-SUN-SCH")

"OAD-COR-ALL-WEEK" = WEEK-SCHEDULE-PD
 TYPE = FRACTION
 DAY-SCHEDULES = ("OAD-COR-M_TH-SCH", &D, &D, &D, "OAD-COR-FRI-SCH",
 "OAD-COR-SAT-SCH", "OAD-COR-SUN-SCH")

"OAD-MECH-ALL-WEEK" = WEEK-SCHEDULE-PD
 TYPE = FRACTION
 DAY-SCHEDULES = ("OAD-MECH-M_TH-SCH", &D, &D, &D, "OAD-MECH-FRI-SCH",
 "OAD-MECH-SAT-SCH", "OAD-MECH-SUN-SCH")

"OAD-STO-ALL-WEEK" = WEEK-SCHEDULE-PD
 TYPE = FRACTION
 DAY-SCHEDULES = ("OAD-STO-M_TH-SCH", &D, &D, &D, "OAD-STO-FRI-SCH",
 "OAD-STO-SAT-SCH", "OAD-STO-SUN-SCH")

"LITE-OFC-TYP-OCCSEN-WK" = WEEK-SCHEDULE-PD
 TYPE = FRACTION
 DAY-SCHEDULES = ("LITE-OFC-WD-OCCSEN-SCH", &D, &D, &D, &D,
 "LITE-OFC-SAT-SCH", "LITE-OFC-SUN-SCH")

"LITE-CLASS-TYP-OCCSEN-WK" = WEEK-SCHEDULE-PD
 TYPE = FRACTION
 DAY-SCHEDULES = ("LITE-CLASS-WD-OCCSEN-SCH", &D, &D, &D, &D,
 "LITE-CLASS-SAT-SCH", "LITE-CLASS-SUN-SCH")

"FAN-WK-TYP" = WEEK-SCHEDULE-PD
 TYPE = ON/OFF
 DAY-SCHEDULES = ("FAN-WD-TYP", &D, &D, &D, &D, "FAN-SAT-TYP",
 "FAN-SUN-TYP")

"OA-ALL-TYP-WEEK" = WEEK-SCHEDULE-PD
 TYPE = FRACTION
 DAY-SCHEDULES = ("OA-ALL-WD-SCH", &D, &D, &D, &D, "OA-ALL-SAT-SCH",
 "OA-ALL-SUN-SCH")
"OA-ALL-VAC-WEEK" = WEEK-SCHEDULE-PD
TYPE = FRACTION

"DHW-WK-SCH" = WEEK-SCHEDULE-PD
TYPE = FRACTION
DAY-SCHEDULES = ("DHW-WD-SCH", &D, &D, &D, &D, "DHW-SAT-SCH", "DHW-SUN-SCH")

"MINFLOW-OFC-TYP-WEEK" = WEEK-SCHEDULE-PD
TYPE = FRACTION

"MINFLOW-OFC-VAC-WEEK" = WEEK-SCHEDULE-PD
TYPE = FRACTION
DAY-SCHEDULES = ("MINFLOW-OFC-SUN-SCH", &D, &D, &D, &D, "MINFLOW-OFC-SUN-SCH")

"ELE-WK-FLAG" = WEEK-SCHEDULE-PD
TYPE = FLAG
DAY-SCHEDULES = ("ELE-WD-FLAG", &D, &D, &D, &D, "ELE-WE-FLAG")

"HTG-AVAIL-NOT-ALL-WEEK" = WEEK-SCHEDULE-PD
TYPE = ON/OFF
DAY-SCHEDULES = ("HTG_AVAIL-NOT-ALL-SCH")

"HTG_AVAIL-TEMP-WEEK" = WEEK-SCHEDULE-PD
TYPE = TEMPERATURE
DAY-SCHEDULES = ("HTG_AVAIL-TEMP-SCH", &D, &D, &D, &D, "HTG_AVAIL-TEMP-SCH")

"EXT-LITE-WIN-WK" = WEEK-SCHEDULE-PD
TYPE = FRACTION
DAY-SCHEDULES = ("EXT-LITE-WINTER", &D, &D, &D, &D, "EXT-LITE-WINTER")

"EXT-LITE-SWING-WK" = WEEK-SCHEDULE-PD
TYPE = FRACTION
DAY-SCHEDULES = ("EXT-LITE-SWING", &D, &D, &D, &D, "EXT-LITE-SWING")

"EXT-LITE-SUM-WK" = WEEK-SCHEDULE-PD
TYPE = FRACTION
DAY-SCHEDULES = ("EXT-LITE-SUMMER", &D, &D, &D, &D, "EXT-LITE-SUMMER")

"HTG-OFC-TYP-WEEK-VAVOCC" = WEEK-SCHEDULE-PD
TYPE = TEMPERATURE

"HTG-OFC-VAC-WEEK-VAVOCC" = WEEK-SCHEDULE-PD
TYPE = TEMPERATURE
DAY-SCHEDULES = ("HTG-OFC-SUN-SCH-VAVOCC")

"HTG-CLASS-TYP-WEEK-VAVOCC" = WEEK-SCHEDULE-PD
TYPE = TEMPERATURE
DAY-SCHEDULES = ("HTG-CLASS-WD-SCH-VAVOCC", &D, &D, &D, &D,
"HTG-CLASS-SAT-SCH-VAVOCC", "HTG-CLASS-SUN-SCH-VAVOCC")

"HTG-CLASS-VAC-WEEK-VAVOCC" = WEEK-SCHEDULE-PD
TYPE = TEMPERATURE
DAY-SCHEDULES = ("HTG-CLASS-SUN-SCH-VAVOCC")

"CLG-OFC-TYP-WEEK-VAVOCC" = WEEK-SCHEDULE-PD
TYPE = TEMPERATURE
DAY-SCHEDULES = ("CLG-OFC-WD-SCH-VAVOCC", &D, &D, &D, &D,
"CLG-OFC-SAT-SCH-VAVOCC", "CLG-OFC-SUN-SCH-VAVOCC")

"CLG-OFC-VAC-WEEK-VAVOCC" = WEEK-SCHEDULE-PD
TYPE = TEMPERATURE
DAY-SCHEDULES = ("CLG-OFC-SUN-SCH-VAVOCC")

"CLG-CLASS-TYP-WEEK-VAVOCC" = WEEK-SCHEDULE-PD
TYPE = TEMPERATURE
DAY-SCHEDULES = ("CLG-CLASS-WD-SCH-VAVOCC", &D, &D, &D, &D,
"CLG-CLASS-SAT-SCH-VAVOCC", "CLG-CLASS-SUN-SCH-VAVOCC")

"CLG-CLASS-VAC-WEEK-VAVOCC" = WEEK-SCHEDULE-PD
TYPE = TEMPERATURE
DAY-SCHEDULES = ("CLG-CLASS-SUN-SCH-VAVOCC")

"HTG-OFC-TYP-WEEK-VAVMIN" = WEEK-SCHEDULE-PD
TYPE = FRACTION
DAY-SCHEDULES = ("HTG-OFC-WD-SCH-VAVMIN", &D, &D, &D, &D,
"HTG-OFC-SAT-SCH-VAVMIN", "HTG-OFC-SUN-SCH-VAVMIN")

"HTG-OFC-VAC-WEEK-VAVMIN" = WEEK-SCHEDULE-PD
TYPE = FRACTION
DAY-SCHEDULES = ("HTG-OFC-SUN-SCH-VAVMIN")

"HTG-CLASS-TYP-WEEK-VAVMIN" = WEEK-SCHEDULE-PD
TYPE = FRACTION
DAY-SCHEDULES = ("HTG-CLASS-WD-SCH-VAVMIN", &D, &D, &D, &D,
"HTG-CLASS-SAT-SCH-VAVMIN", "HTG-CLASS-SUN-SCH-VAVMIN")

"HTG-CLASS-VAC-WEEK-VAVMIN" = WEEK-SCHEDULE-PD
TYPE = FRACTION
DAY-SCHEDULES = ("HTG-CLASS-SUN-SCH-VAVMIN")

"CLG-OFC-TYP-WEEK-VAVMIN" = WEEK-SCHEDULE-PD
TYPE = FRACTION
DAY-SCHEDULES = ("CLG-OFC-WD-SCH-VAVMIN", &D, &D, &D, &D,
"CLG-OFC-SAT-SCH-VAVMIN", "CLG-OFC-SUN-SCH-VAVMIN")

"CLG-OFC-VAC-WEEK-VAVMIN" = WEEK-SCHEDULE-PD
TYPE = FRACTION
DAY-SCHEDULES = ("CLG-OFC-SUN-SCH-VAVMIN")

"CLG-CLASS-TYP-WEEK-VAVMIN" = WEEK-SCHEDULE-PD
TYPE = FRACTION
DAY-SCHEDULES = ("CLG-CLASS-WD-SCH-VAVMIN", &D, &D, &D, &D,
"CLG-CLASS-SAT-SCH-VAVMIN", "CLG-CLASS-SUN-SCH-VAVMIN")

"CLG-CLASS-VAC-WEEK-VAVMIN" = WEEK-SCHEDULE-PD
TYPE = FRACTION
DAY-SCHEDULES = ("CLG-CLASS-SUN-SCH-VAVMIN")
"CLG-CLASS-VAC-WEEK-VAVMIN" = WEEK-SCHEDULE-PD
 TYPE = FRACTION
 DAY-SCHEDULES = ("CLG-CLASS-SUN-SCH-VAVMIN"
)

"HTG-OFC-TYP-WEEK-VAVOCC2" = WEEK-SCHEDULE-PD
 TYPE = TEMPERATURE
 DAY-SCHEDULES = ("HTG-OFC-WD-SCH-VAVOCC2", &D, &D, &D, &D,
 "HTG-OFC-SAT-SCH-VAVOCC2", "HTG-OFC-SUN-SCH-VAVOCC2"
)

"HTG-OFC-VAC-WEEK-VAVOCC2" = WEEK-SCHEDULE-PD
 TYPE = TEMPERATURE
 DAY-SCHEDULES = ("HTG-OFC-SUN-SCH-VAVOCC2"
)

"HTG-CLASS-TYP-WEEK-VAVOCC2" = WEEK-SCHEDULE-PD
 TYPE = TEMPERATURE
 DAY-SCHEDULES = ("HTG-CLASS-WD-SCH-VAVOCC2", &D, &D, &D, &D,
 "HTG-CLASS-SAT-SCH-VAVOCC2", "HTG-CLASS-SUN-SCH-VAVOCC2"
)

"HTG-CLASS-VAC-WEEK-VAVOCC2" = WEEK-SCHEDULE-PD
 TYPE = TEMPERATURE
 DAY-SCHEDULES = ("HTG-CLASS-SUN-SCH-VAVOCC2"
)

"CLG-OFC-TYP-WEEK-VAVOCC2" = WEEK-SCHEDULE-PD
 TYPE = TEMPERATURE
 DAY-SCHEDULES = ("CLG-OFC-WD-SCH-VAVOCC2", &D, &D, &D, &D,
 "CLG-OFC-SAT-SCH-VAVOCC2", "CLG-OFC-SUN-SCH-VAVOCC2"
)

"CLG-OFC-VAC-WEEK-VAVOCC2" = WEEK-SCHEDULE-PD
 TYPE = TEMPERATURE
 DAY-SCHEDULES = ("CLG-OFC-SUN-SCH-VAVOCC2"
)

"CLG-CLASS-TYP-WEEK-VAVOCC2" = WEEK-SCHEDULE-PD
 TYPE = TEMPERATURE
 DAY-SCHEDULES = ("CLG-CLASS-WD-SCH-VAVOCC2", &D, &D, &D, &D,
 "CLG-CLASS-SAT-SCH-VAVOCC2", "CLG-CLASS-SUN-SCH-VAVOCC2"
)

"CLG-CLASS-VAC-WEEK-VAVOCC2" = WEEK-SCHEDULE-PD
 TYPE = TEMPERATURE
 DAY-SCHEDULES = ("CLG-CLASS-SUN-SCH-VAVOCC2"
)

"HTG-OFC-TYP-WEEK-VAVMIN2" = WEEK-SCHEDULE-PD
 TYPE = FRACTION
 DAY-SCHEDULES = ("HTG-OFC-WD-SCH-VAVMIN2", &D, &D, &D, &D,
 "HTG-OFC-SAT-SCH-VAVMIN2", "HTG-OFC-SUN-SCH-VAVMIN2"
)

"HTG-OFC-VAC-WEEK-VAVMIN2" = WEEK-SCHEDULE-PD
 TYPE = FRACTION
 DAY-SCHEDULES = ("HTG-OFC-SUN-SCH-VAVMIN2"
)

"HTG-CLASS-TYP-WEEK-VAVMIN2" = WEEK-SCHEDULE-PD
 TYPE = FRACTION
 DAY-SCHEDULES = ("HTG-CLASS-WD-SCH-VAVMIN2", &D, &D, &D, &D,
 "HTG-CLASS-SAT-SCH-VAVMIN2", "HTG-CLASS-SUN-SCH-VAVMIN2"
)

"HTG-CLASS-VAC-WEEK-VAVMIN2" = WEEK-SCHEDULE-PD
 TYPE = FRACTION
 DAY-SCHEDULES = ("HTG-CLASS-SUN-SCH-VAVMIN2"
)
"CLG-OFC-TYP-WEEK-VAVMIN2" = WEEK-SCHEDULE-PD
TYPE = FRACTION
DAY-SCHEDULES = ("CLG-OFC-WD-SCH-VAVMIN2", &D, &D, &D, &D,
"CLG-OFC-SAT-SCH-VAVMIN2", "CLG-OFC-SUN-SCH-VAVMIN2")

"CLG-OFC-VAC-WEEK-VAVMIN2" = WEEK-SCHEDULE-PD
TYPE = FRACTION
DAY-SCHEDULES = ("CLG-OFC-SUN-SCH-VAVMIN2")

"CLG-CLASS-TYP-WEEK-VAVMIN2" = WEEK-SCHEDULE-PD
TYPE = FRACTION
DAY-SCHEDULES = ("CLG-CLASS-WD-SCH-VAVMIN2", &D, &D, &D, &D,
"CLG-CLASS-SAT-SCH-VAVMIN2", "CLG-CLASS-SUN-SCH-VAVMIN2")

"CLG-CLASS-VAC-WEEK-VAVMIN2" = WEEK-SCHEDULE-PD
TYPE = FRACTION
DAY-SCHEDULES = ("CLG-CLASS-SUN-SCH-VAVMIN2")

$ ---
$ Annual Schedules
$ ---

"OCC-OFC-ANNUAL" = SCHEDULE-PD
TYPE = FRACTION
MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
DAY = (21, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
WEEK-SCHEDULES = ("OCC-OFC-VAC-WEEK", "OCC-OFC-TYP-WEEK",
"OCC-OFC-TYP-WEEK")

"OCC-CLASS-ANNUAL" = SCHEDULE-PD
TYPE = FRACTION
MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
WEEK-SCHEDULES = ("OCC-CLASS-VAC-WEEK", "OCC-CLASS-TYP-WEEK",
"OCC-CLASS-TYP-WEEK")

"OCC-COR-ANNUAL" = SCHEDULE-PD
TYPE = FRACTION
MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
WEEK-SCHEDULES = ("OCC-COR-VAC-WEEK", "OCC-COR-TYP-WEEK",
"OCC-COR-TYP-WEEK")

"OCC-MECH-ANNUAL" = SCHEDULE-PD
TYPE = FRACTION
MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)

DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
WEEK-SCHEDULES = ("OCC-MECH-VAC-WEEK", "OCC-MECH-TYP-WEEK",
"OCC-MECH-VAC-WEEK", "OCC-MECH-TYP-WEEK")

"OCC-STO-ANNUAL" = SCHEDULE-PD
TYPE = FRACTION
MONTH = (1, 2, 2, 4, 4, 5, 6, 7, 8, 9, 12, 12)
DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
WEEK-SCHEDULES = ("OCC-STO-VAC-WEEK", "OCC-STO-TYP-WEEK",
"OCC-STO-VAC-WEEK", "OCC-STO-TYP-WEEK")

"LITE-OFC-ANNUAL" = SCHEDULE-PD
TYPE = FRACTION
MONTH = (1, 2, 2, 4, 4, 5, 6, 7, 8, 9, 12, 12)
DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
WEEK-SCHEDULES = ("LITE-OFC-VAC-WEEK", "LITE-OFC-TYP-WEEK",
"LITE-OFC-VAC-WEEK", "LITE-OFC-TYP-WEEK")

"LITE-CLASS-ANNUAL" = SCHEDULE-PD
TYPE = FRACTION
MONTH = (1, 2, 2, 4, 4, 5, 6, 7, 8, 9, 12, 12)
DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
WEEK-SCHEDULES = ("LITE-CLASS-VAC-WEEK", "LITE-CLASS-TYP-WEEK",
"LITE-CLASS-VAC-WEEK", "LITE-CLASS-TYP-WEEK", "LITE-CLASS-VAC-WEEK",
"LITE-CLASS-TYP-WEEK", "LITE-CLASS-VAC-WEEK", "LITE-CLASS-TYP-WEEK",
"LITE-CLASS-VAC-WEEK", "LITE-CLASS-TYP-WEEK")

"LITE-COR-ANNUAL" = SCHEDULE-PD
TYPE = FRACTION
MONTH = (1, 2, 2, 4, 4, 5, 6, 7, 8, 9, 12, 12)
DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
WEEK-SCHEDULES = ("LITE-COR-VAC-WEEK", "LITE-COR-TYP-WEEK",
"LITE-COR-VAC-WEEK", "LITE-COR-TYP-WEEK", "LITE-COR-VAC-WEEK",
"LITE-COR-TYP-WEEK", "LITE-COR-VAC-WEEK", "LITE-COR-TYP-WEEK",
"LITE-COR-VAC-WEEK", "LITE-COR-TYP-WEEK")

"LITE-MECH-ANNUAL" = SCHEDULE-PD
TYPE = FRACTION
MONTH = (1, 2, 2, 4, 4, 5, 6, 7, 8, 9, 12, 12)
DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
WEEK-SCHEDULES = ("LITE-MECH-VAC-WEEK", "LITE-MECH-TYP-WEEK",
"LITE-MECH-VAC-WEEK", "LITE-MECH-TYP-WEEK", "LITE-MECH-VAC-WEEK",
"LITE-MECH-TYP-WEEK", "LITE-MECH-VAC-WEEK", "LITE-MECH-TYP-WEEK",
"LITE-MECH-VAC-WEEK", "LITE-MECH-TYP-WEEK")
"LITE-STO-ANNUAL" = SCHEDULE-PD
 TYPE = FRACTION
 MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
 WEEK-SCHEDULES = ("LITE-STO-VAC-WEEK", "LITE-STO-TYP-WEEK",
 "LITE-STO-VAC-WEEK", "LITE-STO-TYP-WEEK", "LITE-STO-VAC-WEEK",
 "LITE-STO-TYP-WEEK", "LITE-STO-VAC-WEEK", "LITE-STO-TYP-WEEK",
 "LITE-STO-VAC-WEEK", "LITE-STO-TYP-WEEK", "LITE-STO-VAC-WEEK",
 "LITE-STO-TYP-WEEK", "LITE-STO-VAC-WEEK")

"EQP-OFC-ANNUAL" = SCHEDULE-PD
 TYPE = FRACTION
 MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
 WEEK-SCHEDULES = ("EQP-OFC-VAC-WEEK", "EQP-OFC-TYP-WEEK",
 "EQP-OFC-TYP-WEEK", "EQP-OFC-VAC-WEEK")

"EQP-CLASS-ANNUAL" = SCHEDULE-PD
 TYPE = FRACTION
 MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
 WEEK-SCHEDULES = ("EQP-CLASS-VAC-WEEK", "EQP-CLASS-TYP-WEEK",
 "EQP-CLASS-VAC-WEEK", "EQP-CLASS-TYP-WEEK", "EQP-CLASS-VAC-WEEK",
 "EQP-CLASS-TYP-WEEK", "EQP-CLASS-VAC-WEEK", "EQP-CLASS-TYP-WEEK",
 "EQP-CLASS-VAC-WEEK", "EQP-CLASS-TYP-WEEK", "EQP-CLASS-VAC-WEEK",
 "EQP-CLASS-TYP-WEEK", "EQP-CLASS-VAC-WEEK")

"EQP-COR-ANNUAL" = SCHEDULE-PD
 TYPE = FRACTION
 MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
 WEEK-SCHEDULES = ("EQP-COR-VAC-WEEK", "EQP-COR-TYP-WEEK",
 "EQP-COR-VAC-WEEK", "EQP-COR-TYP-WEEK", "EQP-COR-VAC-WEEK",
 "EQP-COR-TYP-WEEK", "EQP-COR-VAC-WEEK", "EQP-COR-TYP-WEEK",
 "EQP-COR-VAC-WEEK", "EQP-COR-TYP-WEEK", "EQP-COR-VAC-WEEK",
 "EQP-COR-TYP-WEEK", "EQP-COR-VAC-WEEK")

"EQP-MECH-ANNUAL" = SCHEDULE-PD
 TYPE = FRACTION
 MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
 WEEK-SCHEDULES = ("EQP-MECH-VAC-WEEK", "EQP-MECH-TYP-WEEK",
 "EQP-MECH-VAC-WEEK", "EQP-MECH-TYP-WEEK", "EQP-MECH-VAC-WEEK",
 "EQP-MECH-TYP-WEEK", "EQP-MECH-VAC-WEEK", "EQP-MECH-TYP-WEEK",
 "EQP-MECH-VAC-WEEK", "EQP-MECH-TYP-WEEK", "EQP-MECH-VAC-WEEK",
 "EQP-MECH-TYP-WEEK", "EQP-MECH-VAC-WEEK")

"EQP-STO-ANNUAL" = SCHEDULE-PD
 TYPE = FRACTION
 MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
 WEEK-SCHEDULES = ("EQP-STO-VAC-WEEK", "EQP-STO-TYP-WEEK",
 "EQP-STO-VAC-WEEK", "EQP-STO-TYP-WEEK", "EQP-STO-VAC-WEEK",
 "EQP-STO-TYP-WEEK", "EQP-STO-VAC-WEEK", "EQP-STO-TYP-WEEK",
 "EQP-STO-VAC-WEEK", "EQP-STO-TYP-WEEK", "EQP-STO-VAC-WEEK",
 "EQP-STO-TYP-WEEK", "EQP-STO-VAC-WEEK", "EQP-STO-TYP-WEEK")

"HTG-OFC-ANNUAL" = SCHEDULE-PD
TYPE = TEMPERATURE
MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)

"HTG-CLASS-ANNUAL" = SCHEDULE-PD
TYPE = TEMPERATURE
MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)

"HTG-COR-ANNUAL" = SCHEDULE-PD
TYPE = TEMPERATURE
MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)

"HTG-MECH-ANNUAL" = SCHEDULE-PD
TYPE = TEMPERATURE
MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)

"HTG-STO-ANNUAL" = SCHEDULE-PD
TYPE = TEMPERATURE
MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)

"CLG-OFC-ANNUAL" = SCHEDULE-PD
TYPE = TEMPERATURE
MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)

"CLG-CLASS-ANNUAL" = SCHEDULE-PD
 TYPE = TEMPERATURE
 MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)

"CLG-COR-ANNUAL" = SCHEDULE-PD
 TYPE = TEMPERATURE
 MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)

"CLG-MECH-ANNUAL" = SCHEDULE-PD
 TYPE = TEMPERATURE
 MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)

"CLG-STO-ANNUAL" = SCHEDULE-PD
 TYPE = TEMPERATURE
 MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)

"FAN-ALL-ANNUAL" = SCHEDULE-PD
 TYPE = FRACTION
 MONTH = (12)
 DAY = (31)
WEEK-SCHEDULES = ("FAN-ALL-ALL-WEEK")

"INF-ALL-ANNUAL" = SCHEDULE-PD
 TYPE = FRACTION
 MONTH = (12)
 DAY = (31)
WEEK-SCHEDULES = ("INF-ALL-ALL-WEEK")
"HTG_AVAIL-ALL-ANNUAL" = SCHEDULE-PD
 TYPE = ON/OFF
 MONTH = (12)
 DAY = (31)
 WEEK-SCHEDULES = ("HTG_AVAIL-ALL-ALL-WEEK")
...

"CLG_AVAIL-ALL-ANNUAL" = SCHEDULE-PD
 TYPE = ON/OFF
 MONTH = (12)
 DAY = (31)
 WEEK-SCHEDULES = ("CLG_AVAIL-ALL-ALL-WEEK")
...

"OAD-OFC-ANNUAL" = SCHEDULE-PD
 TYPE = FRACTION
 MONTH = (12)
 DAY = (31)
 WEEK-SCHEDULES = ("OAD-OFC-ALL-WEEK")
...

"OAD-CLASS-ANNUAL" = SCHEDULE-PD
 TYPE = FRACTION
 MONTH = (12)
 DAY = (31)
 WEEK-SCHEDULES = ("OAD-CLASS-ALL-WEEK")
...

"OAD-COR-ANNUAL" = SCHEDULE-PD
 TYPE = FRACTION
 MONTH = (12)
 DAY = (31)
 WEEK-SCHEDULES = ("OAD-COR-ALL-WEEK")
...

"OAD-MECH-ANNUAL" = SCHEDULE-PD
 TYPE = FRACTION
 MONTH = (12)
 DAY = (31)
 WEEK-SCHEDULES = ("OAD-MECH-ALL-WEEK")
...

"OAD-STO-ANNUAL" = SCHEDULE-PD
 TYPE = FRACTION
 MONTH = (12)
 DAY = (31)
 WEEK-SCHEDULES = ("OAD-STO-ALL-WEEK")
...

"LITE-OFC-OCCSEN-ANNUAL" = SCHEDULE-PD
 TYPE = FRACTION
 MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
 WEEK-SCHEDULES = ("LITE-OFC-VAC-WEEK", "LITE-OFC-TYP-OCCSEN-WK",
 "LITE-OFC-TYP-WEEK")
...

"LITE-CLASS-OCCSEN-ANNUAL" = SCHEDULE-PD
 TYPE = FRACTION
 MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
WEEK-SCHEDULES = ("LITE-CLASS-VAC-WEEK", "LITE-CLASS-TYP-OCCSEN-WK",
"LITE-CLASS-VAC-WEEK", "LITE-CLASS-TYP-WEEK", "LITE-CLASS-VAC-WEEK",
"LITE-CLASS-TYP-WEEK", "LITE-CLASS-VAC-WEEK", "LITE-CLASS-TYP-WEEK",
"LITE-CLASS-VAC-WEEK", "LITE-CLASS-TYP-WEEK", "LITE-CLASS-VAC-WEEK",
"LITE-CLASS-TYP-WEEK", "LITE-CLASS-VAC-WEEK", "LITE-CLASS-TYP-WEEK")

"FAN-SCH-ANNUAL" = SCHEDULE-PD
 TYPE = ON/OFF
 MONTH = (12)
 DAY = (31)
 WEEK-SCHEDULES = ("FAN-WK-TYP")

"OA-ALL-ANNUAL" = SCHEDULE-PD
 TYPE = FRACTION
 MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
 WEEK-SCHEDULES = ("OA-ALL-VAC-WEEK", "OA-ALL-TYP-WEEK",

"DHW-SCH" = SCHEDULE-PD
 TYPE = FRACTION
 MONTH = (12)
 DAY = (31)
 WEEK-SCHEDULES = ("DHW-WK-SCH")

"MINFLOW-OFC-ANNUAL" = SCHEDULE-PD
 TYPE = FRACTION
 MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
 DAY = (21, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
 WEEK-SCHEDULES = ("MINFLOW-OFC-VAC-WEEK", "MINFLOW-OFC-TYP-WEEK",
 "MINFLOW-OFC-VAC-WEEK", "MINFLOW-OFC-TYP-WEEK",
 "MINFLOW-OFC-VAC-WEEK", "MINFLOW-OFC-TYP-WEEK",
 "MINFLOW-OFC-VAC-WEEK", "MINFLOW-OFC-TYP-WEEK",
 "MINFLOW-OFC-VAC-WEEK", "MINFLOW-OFC-TYP-WEEK",
 "MINFLOW-OFC-VAC-WEEK", "MINFLOW-OFC-TYP-WEEK")

"ELE-SCH-FLAG" = SCHEDULE-PD
 TYPE = FLAG
 MONTH = (12)
 DAY = (31)
 WEEK-SCHEDULES = ("ELE-WK-FLAG")

"HTG_AVAIL-NOT-ALL-ANNUAL" = SCHEDULE-PD
 TYPE = ON/OFF
 MONTH = (6, 9, 12)
 DAY = (15, 15, 31)
 WEEK-SCHEDULES = ("HTG_AVAIL-ALL-ALL-WEEK", "HTG-AVAIL-NOT-ALL-WEEK",
 "HTG_AVAIL-ALL-ALL-WEEK")

"HTG_AVAIL-TEMP-ANNUAL" = SCHEDULE-PD
 TYPE = TEMPERATURE
 MONTH = (12)
 DAY = (31)
WEEK-SCHEDULES = ("HTG_AVAIL-TEMP-WEEK")

"EXT-LIGHTS-SCH" = SCHEDULE-PD
 TYPE = FRACTION
 MONTH = (2, 5, 8, 10, 12)
 DAY = (28, 31, 31, 31, 31)
 WEEK-SCHEDULES = ("EXT-LITE-WIN-WK", "EXT-LITE-SWING-WK",
 "EXT-LITE-SUM-WK", "EXT-LITE-SWING-WK", "EXT-LITE-WIN-WK")

"HTG-OFC-ANNUAL-VAVOCC" = SCHEDULE-PD
 TYPE = TEMPERATURE
 MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
 WEEK-SCHEDULES = ("HTG-OFC-VAC-WEEK-VAVOCC", "HTG-OFC-TYP-WEEK-VAVOCC",
 "HTG-OFC-VAC-WEEK-VAVOCC", "HTG-OFC-VAC-WEEK-VAVOCC",
 "HTG-OFC-VAC-WEEK-VAVOCC", "HTG-OFC-TYP-WEEK-VAVOCC",
 "HTG-OFC-VAC-WEEK-VAVOCC", "HTG-OFC-TYP-WEEK-VAVOCC",
 "HTG-OFC-VAC-WEEK-VAVOCC", "HTG-OFC-TYP-WEEK-VAVOCC",
 "HTG-OFC-VAC-WEEK-VAVOCC", "HTG-OFC-TYP-WEEK-VAVOCC",
 "HTG-OFC-VAC-WEEK-VAVOCC", "HTG-OFC-TYP-WEEK-VAVOCC")

"HTG-CLASS-ANNUAL-VAVOCC" = SCHEDULE-PD
 TYPE = TEMPERATURE
 MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
 WEEK-SCHEDULES = ("HTG-CLASS-VAC-WEEK-VAVOCC",
 "HTG-CLASS-TYP-WEEK-VAVOCC", "HTG-CLASS-VAC-WEEK-VAVOCC",
 "HTG-CLASS-TYP-WEEK-VAVOCC", "HTG-CLASS-VAC-WEEK-VAVOCC",
 "HTG-CLASS-TYP-WEEK-VAVOCC", "HTG-CLASS-VAC-WEEK-VAVOCC",
 "HTG-CLASS-TYP-WEEK-VAVOCC", "HTG-CLASS-VAC-WEEK-VAVOCC",
 "HTG-CLASS-TYP-WEEK-VAVOCC", "HTG-CLASS-VAC-WEEK-VAVOCC",
 "HTG-CLASS-TYP-WEEK-VAVOCC", "HTG-CLASS-VAC-WEEK-VAVOCC")

"CLG-OFC-ANNUAL-VAVOCC" = SCHEDULE-PD
 TYPE = TEMPERATURE
 MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
 WEEK-SCHEDULES = ("CLG-OFC-VAC-WEEK-VAVOCC", "CLG-OFC-TYP-WEEK-VAVOCC",
 "CLG-OFC-VAC-WEEK-VAVOCC", "CLG-OFC-VAC-WEEK-VAVOCC",
 "CLG-OFC-VAC-WEEK-VAVOCC", "CLG-OFC-TYP-WEEK-VAVOCC",
 "CLG-OFC-VAC-WEEK-VAVOCC", "CLG-OFC-TYP-WEEK-VAVOCC",
 "CLG-OFC-VAC-WEEK-VAVOCC", "CLG-OFC-TYP-WEEK-VAVOCC",
 "CLG-OFC-VAC-WEEK-VAVOCC", "CLG-OFC-TYP-WEEK-VAVOCC")

"CLG-CLASS-ANNUAL-VAVOCC" = SCHEDULE-PD
 TYPE = TEMPERATURE
 MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
 WEEK-SCHEDULES = ("CLG-CLASS-VAC-WEEK-VAVOCC",
 "CLG-CLASS-TYP-WEEK-VAVOCC", "CLG-CLASS-VAC-WEEK-VAVOCC",
 "CLG-CLASS-TYP-WEEK-VAVOCC", "CLG-CLASS-VAC-WEEK-VAVOCC",
 "CLG-CLASS-TYP-WEEK-VAVOCC", "CLG-CLASS-VAC-WEEK-VAVOCC",
 "CLG-CLASS-TYP-WEEK-VAVOCC", "CLG-CLASS-VAC-WEEK-VAVOCC",
 "CLG-CLASS-TYP-WEEK-VAVOCC", "CLG-CLASS-VAC-WEEK-VAVOCC",
 "CLG-CLASS-TYP-WEEK-VAVOCC", "CLG-CLASS-VAC-WEEK-VAVOCC")
"HTG-OFC-ANNUAL-VAVMIN" = SCHEDULE-PD
 TYPE = FRACTION
 MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
 WEEK-SCHEDULES = ("HTG-OFC-VAC-WEEK-VAVMIN", "HTG-OFC-TYP-WEEK-VAVMIN",
 "HTG-OFC-VAC-WEEK-VAVMIN", "HTG-OFC-TYP-WEEK-VAVMIN",
 "HTG-OFC-VAC-WEEK-VAVMIN", "HTG-OFC-TYP-WEEK-VAVMIN",
 "HTG-OFC-VAC-WEEK-VAVMIN", "HTG-OFC-TYP-WEEK-VAVMIN",
 "HTG-OFC-VAC-WEEK-VAVMIN", "HTG-OFC-TYP-WEEK-VAVMIN",
 "HTG-OFC-VAC-WEEK-VAVMIN", "HTG-OFC-TYP-WEEK-VAVMIN",
 "HTG-OFC-VAC-WEEK-VAVMIN",)

"HTG-CLASS-ANNUAL-VAVMIN" = SCHEDULE-PD
 TYPE = FRACTION
 MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
 WEEK-SCHEDULES = ("HTG-CLASS-VAC-WEEK-VAVMIN",
 "HTG-CLASS-TYP-WEEK-VAVMIN", "HTG-CLASS-VAC-WEEK-VAVMIN",
 "HTG-CLASS-TYP-WEEK-VAVMIN", "HTG-CLASS-VAC-WEEK-VAVMIN",
 "HTG-CLASS-TYP-WEEK-VAVMIN", "HTG-CLASS-VAC-WEEK-VAVMIN",
 "HTG-CLASS-TYP-WEEK-VAVMIN", "HTG-CLASS-VAC-WEEK-VAVMIN",
 "HTG-CLASS-TYP-WEEK-VAVMIN", "HTG-CLASS-VAC-WEEK-VAVMIN",
 "HTG-CLASS-TYP-WEEK-VAVMIN",)

"CLG-OFC-ANNUAL-VAVMIN" = SCHEDULE-PD
 TYPE = FRACTION
 MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
 WEEK-SCHEDULES = ("CLG-OFC-VAC-WEEK-VAVMIN", "CLG-OFC-TYP-WEEK-VAVMIN",
 "CLG-OFC-VAC-WEEK-VAVMIN", "CLG-OFC-TYP-WEEK-VAVMIN",
 "CLG-OFC-VAC-WEEK-VAVMIN", "CLG-OFC-TYP-WEEK-VAVMIN",
 "CLG-OFC-VAC-WEEK-VAVMIN", "CLG-OFC-TYP-WEEK-VAVMIN",
 "CLG-OFC-VAC-WEEK-VAVMIN", "CLG-OFC-TYP-WEEK-VAVMIN",
 "CLG-OFC-VAC-WEEK-VAVMIN",)

"CLG-CLASS-ANNUAL-VAVMIN" = SCHEDULE-PD
 TYPE = FRACTION
 MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
 WEEK-SCHEDULES = ("CLG-CLASS-VAC-WEEK-VAVMIN",
 "CLG-CLASS-TYP-WEEK-VAVMIN", "CLG-CLASS-VAC-WEEK-VAVMIN",
 "CLG-CLASS-TYP-WEEK-VAVMIN", "CLG-CLASS-VAC-WEEK-VAVMIN",
 "CLG-CLASS-TYP-WEEK-VAVMIN", "CLG-CLASS-VAC-WEEK-VAVMIN",
 "CLG-CLASS-TYP-WEEK-VAVMIN", "CLG-CLASS-VAC-WEEK-VAVMIN",
 "CLG-CLASS-TYP-WEEK-VAVMIN", "CLG-CLASS-VAC-WEEK-VAVMIN",
 "CLG-CLASS-TYP-WEEK-VAVMIN",)

"HTG-OFC-ANNUAL-VAVOCC2" = SCHEDULE-PD
 TYPE = TEMPERATURE
 MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
 WEEK-SCHEDULES = ("HTG-OFC-VAC-WEEK-VAVOCC2",
 "HTG-OFC-TYP-WEEK-VAVOCC2", "HTG-OFC-VAC-WEEK-VAVOCC2",
 "HTG-OFC-TYP-WEEK-VAVOCC2", "HTG-OFC-VAC-WEEK-VAVOCC2",
 "HTG-OFC-TYP-WEEK-VAVOCC2", "HTG-OFC-VAC-WEEK-VAVOCC2",
 "HTG-OFC-TYP-WEEK-VAVOCC2", "HTG-OFC-VAC-WEEK-VAVOCC2",
 "HTG-OFC-TYP-WEEK-VAVOCC2", "HTG-OFC-VAC-WEEK-VAVOCC2",)
"HTG-OFC-TYP-WEEK-VAVOCC2", "HTG-OFC-VAC-WEEK-VAVOCC2",
"HTG-OFC-TYP-WEEK-VAVOCC2", "HTG-OFC-VAC-WEEK-VAVOCC2")

"HTG-CLASS-ANNUAL-VAVOCC2" = SCHEDULE-PD
TYPE = TEMPERATURE
MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
WEEK-SCHEDULES = ("HTG-CLASS-VAC-WEEK-VAVOCC2",
"HTG-CLASS-TYP-WEEK-VAVOCC2", "HTG-CLASS-VAC-WEEK-VAVOCC2",
"HTG-CLASS-TYP-WEEK-VAVOCC2", "HTG-CLASS-VAC-WEEK-VAVOCC2",
"HTG-CLASS-TYP-WEEK-VAVOCC2", "HTG-CLASS-VAC-WEEK-VAVOCC2",
"HTG-CLASS-TYP-WEEK-VAVOCC2", "HTG-CLASS-VAC-WEEK-VAVOCC2",
"HTG-CLASS-TYP-WEEK-VAVOCC2", "HTG-CLASS-VAC-WEEK-VAVOCC2"
"

"CLG-OFC-ANNUAL-VAVOCC2" = SCHEDULE-PD
TYPE = TEMPERATURE
MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
WEEK-SCHEDULES = ("CLG-OFC-VAC-WEEK-VAVOCC2",
"CLG-OFC-TYP-WEEK-VAVOCC2", "CLG-OFC-VAC-WEEK-VAVOCC2",
"CLG-OFC-TYP-WEEK-VAVOCC2", "CLG-OFC-VAC-WEEK-VAVOCC2",
"CLG-OFC-TYP-WEEK-VAVOCC2", "CLG-OFC-VAC-WEEK-VAVOCC2",
"CLG-OFC-TYP-WEEK-VAVOCC2", "CLG-OFC-VAC-WEEK-VAVOCC2",
"CLG-OFC-TYP-WEEK-VAVOCC2", "CLG-OFC-VAC-WEEK-VAVOCC2"
"

"CLG-CLASS-ANNUAL-VAVOCC2" = SCHEDULE-PD
TYPE = TEMPERATURE
MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
WEEK-SCHEDULES = ("CLG-CLASS-VAC-WEEK-VAVOCC2",
"CLG-CLASS-TYP-WEEK-VAVOCC2", "CLG-CLASS-VAC-WEEK-VAVOCC2",
"CLG-CLASS-TYP-WEEK-VAVOCC2", "CLG-CLASS-VAC-WEEK-VAVOCC2",
"CLG-CLASS-TYP-WEEK-VAVOCC2", "CLG-CLASS-VAC-WEEK-VAVOCC2",
"CLG-CLASS-TYP-WEEK-VAVOCC2", "CLG-CLASS-VAC-WEEK-VAVOCC2",
"CLG-CLASS-TYP-WEEK-VAVOCC2", "CLG-CLASS-VAC-WEEK-VAVOCC2"
"

"HTG-OFC-ANNUAL-VAVMIN2" = SCHEDULE-PD
TYPE = FRACTION
MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
WEEK-SCHEDULES = ("HTG-OFC-VAC-WEEK-VAVMIN2",
"HTG-OFC-TYP-WEEK-VAVMIN2", "HTG-OFC-VAC-WEEK-VAVMIN2",
"HTG-OFC-TYP-WEEK-VAVMIN2", "HTG-OFC-VAC-WEEK-VAVMIN2",
"HTG-OFC-TYP-WEEK-VAVMIN2", "HTG-OFC-VAC-WEEK-VAVMIN2",
"HTG-OFC-TYP-WEEK-VAVMIN2", "HTG-OFC-VAC-WEEK-VAVMIN2",
"HTG-OFC-TYP-WEEK-VAVMIN2", "HTG-OFC-VAC-WEEK-VAVMIN2"
"

"HTG-CLASS-ANNUAL-VAVMIN2" = SCHEDULE-PD
TYPE = FRACTION
MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
WEEK-SCHEDULES = ("HTG-CLASS-VAC-WEEK-VAVMIN2",
"HTG-CLASS-TYP-WEEK-VAVMIN2", "HTG-CLASS-VAC-WEEK-VAVMIN2",
"HTG-CLASS-TYP-WEEK-VAVMIN2", "HTG-CLASS-VAC-WEEK-VAVMIN2",
"HTG-CLASS-TYP-WEEK-VAVMIN2", "HTG-CLASS-VAC-WEEK-VAVMIN2",
"HTG-CLASS-TYP-WEEK-VAVMIN2", "HTG-CLASS-VAC-WEEK-VAVMIN2",
"HTG-CLASS-TYP-WEEK-VAVMIN2", "HTG-CLASS-VAC-WEEK-VAVMIN2"
"
"HTG-CLASS-TYP-WEEK-VAVMIN2", "HTG-CLASS-VAC-WEEK-VAVMIN2",
"HTG-CLASS-TYP-WEEK-VAVMIN2", "HTG-CLASS-VAC-WEEK-VAVMIN2",
"HTG-CLASS-TYP-WEEK-VAVMIN2", "HTG-CLASS-VAC-WEEK-VAVMIN2",
"HTG-CLASS-TYP-WEEK-VAVMIN2", "HTG-CLASS-VAC-WEEK-VAVMIN2",
"HTG-CLASS-TYP-WEEK-VAVMIN2", "HTG-CLASS-VAC-WEEK-VAVMIN2",
"HTG-CLASS-TYP-WEEK-VAVMIN2", "HTG-CLASS-VAC-WEEK-VAVMIN2")

"CLG-OFC-ANNUAL-VAVMIN2" = SCHEDULE-PD
 TYPE = FRACTION
 MONTH = (1, 2, 2, 4, 4, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
 WEEK-SCHEDULES = ("CLG-OFC-VAC-WEEK-VAVMIN2",
 "CLG-OFC-TYP-WEEK-VAVMIN2", "CLG-OFC-VAC-WEEK-VAVMIN2")

"CLG-CLASS-ANNUAL-VAVMIN2" = SCHEDULE-PD
 TYPE = FRACTION
 MONTH = (1, 2, 2, 4, 4, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
 WEEK-SCHEDULES = ("CLG-CLASS-VAC-WEEK-VAVMIN2",
 "CLG-CLASS-TYP-WEEK-VAVMIN2", "CLG-CLASS-VAC-WEEK-VAVMIN2")

$ ---
$ Polygons
$ ---

"Floor-1-XY" = POLYGON
 V1 = (0, 0)
 V2 = (13, 0)
 V3 = (13, -4)
 V4 = (33, -4)
 V5 = (33, 0)
 V6 = (116, 0)
 V7 = (116, 99)
 V8 = (102, 99)
 V9 = (102, 105)
 V10 = (12, 105)
 V11 = (12, 35)
 V12 = (0, 35)

"201-191-COR-XY" = POLYGON
 V1 = (0, 0)
 V2 = (13, 0)
 V3 = (13, -4)
 V4 = (17, -4)
 V5 = (29, -4)
 V6 = (33, -4)
V7 = (33, 22)
V8 = (22, 22)
V9 = (22, 105)
V10 = (20, 105)
V11 = (15, 105)
V12 = (12, 105)
V13 = (12, 50)
V14 = (12, 47)
V15 = (12, 45)
V16 = (12, 42)
V17 = (12, 40)
V18 = (12, 37)
V19 = (12, 35)
V20 = (0, 35)
V21 = (0, 25)
V22 = (0, 22)

"Z02-195-RR-XY" = POLYGON
V1 = (22, 92)
V2 = (47, 92)
V3 = (47, 105)
V4 = (22, 105)

"Z03-199-STO-XY" = POLYGON
V1 = (54, 92)
V2 = (91, 92)
V3 = (91, 105)
V4 = (54, 105)

"Z04-191-COR-XY" = POLYGON
V1 = (33, 14)
V2 = (102, 14)
V3 = (102, 91)
V4 = (116, 91)
V5 = (116, 99)
V6 = (102, 99)
V7 = (102, 105)
V8 = (91, 105)
V9 = (91, 92)
V10 = (22, 92)
V11 = (22, 84)
V12 = (94, 84)
V13 = (94, 22)
V14 = (33, 22)

"Z05-10A-CLA-XY" = POLYGON
V1 = (22, 53)
V2 = (53, 53)
V3 = (53, 84)
V4 = (22, 84)

"Z06-10B-CLA-XY" = POLYGON
V1 = (22, 22)
V2 = (53, 22)
V3 = (53, 53)
V4 = (22, 53)
"Z07-110-CLAB-XY" = POLYGON
V1 = (53, 53)
V2 = (73, 53)
V3 = (73, 84)
V4 = (53, 84)
...

"Z08-127-CLAB-XY" = POLYGON
V1 = (53, 22)
V2 = (73, 22)
V3 = (73, 53)
V4 = (53, 53)
...

"Z09-112-CLAB-XY" = POLYGON
V1 = (73, 53)
V2 = (94, 53)
V3 = (94, 84)
V4 = (73, 84)
...

"Z10-125-CLAB-XY" = POLYGON
V1 = (73, 22)
V2 = (94, 22)
V3 = (94, 53)
V4 = (73, 53)
...

"Z11-130-OFC-XY" = POLYGON
V1 = (33, 0)
V2 = (36, 0)
V3 = (39, 0)
V4 = (46, 0)
V5 = (49, 0)
V6 = (56, 0)
V7 = (59, 0)
V8 = (66, 0)
V9 = (69, 0)
V10 = (76, 0)
V11 = (79, 0)
V12 = (86, 0)
V13 = (89, 0)
V14 = (96, 0)
V15 = (99, 0)
V16 = (102, 0)
V17 = (102, 14)
V18 = (33, 14)
...

"Z12-126-OFC-XY" = POLYGON
V1 = (102, 0)
V2 = (106, 0)
V3 = (109, 0)
V4 = (116, 0)
V5 = (116, 10)
V6 = (116, 13)
V7 = (116, 16)
V8 = (102, 16)
...

"Z13-120-OFC-XY" = POLYGON
V1 = (102, 16)
V2 = (116, 16)
V3 = (116, 21)
V4 = (116, 24)
V5 = (116, 32)
V6 = (116, 35)
V7 = (116, 43)
V8 = (116, 46)
V9 = (116, 54)
V10 = (116, 57)
V11 = (116, 65)
V12 = (116, 68)
V13 = (116, 76)
V14 = (116, 79)
V15 = (116, 87)
V16 = (116, 90)
V17 = (116, 91)
V18 = (102, 91)

"Z14-199-DATA-XY" = POLYGON
 V1 = (47, 92)
 V2 = (54, 92)
 V3 = (54, 105)
 V4 = (47, 105)

"Floor-2-XY" = POLYGON
 V1 = (0, 0)
 V2 = (12, 0)
 V3 = (12, -4)
 V4 = (33, -4)
 V5 = (33, 0)
 V6 = (115, 0)
 V7 = (115, 99)
 V8 = (101, 99)
 V9 = (101, 105)
 V10 = (11, 105)
 V11 = (11, 35)
 V12 = (0, 35)

"Z15-293-COR-XY" = POLYGON
 V1 = (0, 0)
 V2 = (12, 0)
 V3 = (12, 14)
 V4 = (25, 14)
 V5 = (25, 22)
 V6 = (22, 22)
 V7 = (22, 106)
 V8 = (11, 106)
 V9 = (11, 35)
 V10 = (0, 35)

"Z16-295-RR-XY" = POLYGON
 V1 = (22, 92)
 V2 = (47, 92)
 V3 = (47, 105)
 V4 = (22, 105)

"Z17-299-DATA-XY" = POLYGON
 V1 = (47, 92)
V2 = (54, 92)
V3 = (54, 105)
V4 = (47, 105)
...
"218-209-OFC-XY" = POLYGON
V1 = (54, 92)
V2 = (81, 92)
V3 = (81, 105)
V4 = (54, 105)
...
"219-291-COR-XY" = POLYGON
V1 = (25, 14)
V2 = (81, 14)
V3 = (81, 92)
V4 = (22, 92)
V5 = (22, 84)
V6 = (73, 84)
V7 = (73, 22)
V8 = (25, 22)
...
"220-206-CLAB-XY" = POLYGON
V1 = (22, 53)
V2 = (42, 53)
V3 = (42, 84)
V4 = (22, 84)
...
"221-212-LEARN-XY" = POLYGON
V1 = (22, 22)
V2 = (42, 22)
V3 = (42, 53)
V4 = (22, 53)
...
"222-208-CLAB-XY" = POLYGON
V1 = (42, 53)
V2 = (63, 53)
V3 = (63, 84)
V4 = (42, 84)
...
"223-212-LEARN-XY" = POLYGON
V1 = (42, 22)
V2 = (62, 22)
V3 = (62, 34)
V4 = (73, 34)
V5 = (73, 45)
V6 = (62, 45)
V7 = (62, 53)
V8 = (42, 53)
...
"224-210-OFC-XY" = POLYGON
V1 = (62, 45)
V2 = (73, 45)
V3 = (73, 84)
V4 = (62, 84)
...
"225-212-MEDIA-XY" = POLYGON
V1 = (62, 22)
V2 = (73, 22)
V3 = (73, 34)
V4 = (62, 34)

"Z26-211-FUND-XY" = POLYGON
V1 = (81, 52)
V2 = (115, 52)
V3 = (115, 99)
V4 = (101, 99)
V5 = (101, 105)
V6 = (81, 105)

"Z27-215-BEDLAB-XY" = POLYGON
V1 = (81, 14)
V2 = (115, 14)
V3 = (115, 52)
V4 = (81, 52)

"Z28-217-LOUNGE-XY" = POLYGON
V1 = (72, 0)
V2 = (76, 0)
V3 = (79, 0)
V4 = (82, 0)
V5 = (115, 0)
V6 = (115, 14)
V7 = (72, 14)

"Z29-223-OFC-XY" = POLYGON
V1 = (12, 0)
V2 = (16, 0)
V3 = (19, 0)
V4 = (26, 0)
V5 = (29, 0)
V6 = (33, 0)
V7 = (36, 0)
V8 = (39, 0)
V9 = (46, 0)
V10 = (49, 0)
V11 = (56, 0)
V12 = (59, 0)
V13 = (66, 0)
V14 = (69, 0)
V15 = (72, 0)
V16 = (72, 14)
V17 = (12, 14)

"Z01-191-COR-XY - SMirro" = POLYGON
V1 = (0, 0)
V2 = (22, 0)
V3 = (25, 0)
V4 = (35, 0)
V5 = (35, 12)
V6 = (37, 12)
V7 = (40, 12)
V8 = (42, 12)
V9 = (45, 12)
V10 = (47, 12)
V11 = (50, 12)
"Z13-120-OFC-XY - SMirro" = POLYGON
V1 = (16, 102)
V2 = (91, 102)
V3 = (91, 116)
V4 = (90, 116)
V5 = (87, 116)
V6 = (79, 116)
V7 = (76, 116)
V8 = (68, 116)
V9 = (65, 116)
V10 = (57, 116)
V11 = (54, 116)
V12 = (46, 116)
V13 = (43, 116)
V14 = (35, 116)
V15 = (32, 116)
V16 = (24, 116)
V17 = (21, 116)
V18 = (16, 116)

"Z01-101-COR-ROOF-XY" = POLYGON
V1 = (0, 0)
V2 = (20, 0)
V3 = (20, 4)
V4 = (0, 4)

$ ---
$ Wall Parameters
$ ---

$ ---
$ Fixed and Building Shades
$ ---

$ ---
$ Misc Cost Related Objects
$ ---

"BASELINE 1" = BASELINE

$ ***
$ ** **
$ ** Floors / Spaces / Walls / Windows / Doors **
$ ** **
$ ***
"Floor-1" = FLOOR
 Z = 0
 POLYGON = "Floor-1-XY"
 SHAPE = POLYGON
 FLOOR-HEIGHT = 14
 SPACE-HEIGHT = 14
 C-DIAGRAM-DATA = "Bldg Envelope & Loads 1 Diag Data"
 ..
"Z01-191-COR" = SPACE
 SHAPE = POLYGON
 PEOPLE-SCHEDULE = "OCC-COR-ANNUAL"
 LIGHTING-SCHEDUL = ("LITE-COR-ANNUAL")
 EQUIP-SCHEDULE = ("EQP-COR-ANNUAL")
 INF-SCHEDULE = "INF-ALL-ANNUAL"
 LIGHTING-TYPE = (REC-FLUOR-NV)
 INF-METHOD = AIR-CHANGE
 AIR-CHANGES/HR = 0.2
 PEOPLE-HG-LAT = 250
 PEOPLE-HG-SENS = 250
 NUMBER-OF-PEOPLE = 3
 LIGHTING-W/AREA = (0.79)
 EQUIPMENT-W/AREA = (0.07)
 POLYGON = "Z01-191-COR-XY"
 ..
"W01-Z01-191-COR" = EXTERIOR-WALL
 CONSTRUCTION = "W-BRICK-CONS"
 LOCATION = SPACE-V1
 ..
"W02-Z01-191-COR" = EXTERIOR-WALL
 CONSTRUCTION = "W-BRICK-CONS"
 HEIGHT = 25
 LOCATION = SPACE-V2
 ..
"WIN01-W02-Z01-191-COR" = WINDOW
 GLASS-TYPE = "TYP-GLASS-2"
 X = 0.5
 Y = 8
 HEIGHT = 12
 WIDTH = 3
 ..
"W03-Z01-191-COR" = EXTERIOR-WALL
 CONSTRUCTION = "W-BRICK-CONS"
 HEIGHT = 25
 LOCATION = SPACE-V3
 ..
"WIN01-W03-Z01-191-COR" = WINDOW
 GLASS-TYPE = "TYP-GLASS-2"
 HEIGHT = 20
 WIDTH = 3.75
 ..
"W04-Z01-191-COR" = EXTERIOR-WALL
 CONSTRUCTION = "W-BRICK-CONS"
 HEIGHT = 25
 LOCATION = SPACE-V4
 ..
"WIN01-W04-Z01-191-COR" = WINDOW
GLASS-TYPE = "TYP-GLASS-2"
X = 0
Y = 0
HEIGHT = 10
WIDTH = 11.5
SETBACK = 0
OVERHANG-A = 4
OVERHANG-W = 19.5
OVERHANG-D = 4

"WIN02-W04-Z01-191-COR" = WINDOW
GLASS-TYPE = "TYP-GLASS-2"
X = 0
Y = 10
HEIGHT = 12
WIDTH = 11.5
SETBACK = 0
OVERHANG-A = 4
OVERHANG-W = 19.5
OVERHANG-D = 4

"W05-Z01-191-COR" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
HEIGHT = 25
LOCATION = SPACE-V5

"WIN01-W05-Z01-191-COR" = WINDOW
GLASS-TYPE = "TYP-GLASS-2"
HEIGHT = 20
WIDTH = 3.75

"W06-Z01-191-COR" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
HEIGHT = 25
WIDTH = 4
LOCATION = SPACE-V6

"WIN01-W06-Z01-191-COR" = WINDOW
GLASS-TYPE = "TYP-GLASS-2"
X = 0.5
Y = 8
HEIGHT = 12
WIDTH = 3

"W10-Z01-191-COR" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V12

"W11-Z01-191-COR" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V13

"W12-Z01-191-COR" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V14

"WIN01-W12-Z01-191-COR" = WINDOW
GLASS-TYPE = "TYP-GLASS-1"
Y = 3.5
HEIGHT = 5
WIDTH = 2

"W13-Z01-191-COR" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V15

"WIN01-W13-Z01-191-COR" = WINDOW
GLASS-TYPE = "TYP-GLASS-2"
X = 0
Y = 3.5
HEIGHT = 5
WIDTH = 0.5
SETBACK = 0

"WIN02-W13-Z01-191-COR" = WINDOW
GLASS-TYPE = "TYP-GLASS-2"
X = 2.5
Y = 3.5
HEIGHT = 5
WIDTH = 0.5
SETBACK = 0

"W14-Z01-191-COR" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V16

"WIN01-W14-Z01-191-COR" = WINDOW
GLASS-TYPE = "TYP-GLASS-1"
Y = 3.5
HEIGHT = 5
WIDTH = 2

"W15-Z01-191-COR" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V17

"W16-Z01-191-COR" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V18

"W17-Z01-191-COR" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V19

"W18-Z01-191-COR" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V20

"W19-Z01-191-COR" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V21

"WIN01-W18-Z01-191-COR" = WINDOW
GLASS-TYPE = "TYP-GLASS-2"
X = 0
Y = 0
HEIGHT = 7
WIDTH = 3
SETBACK = 0

"W20-Z01-191-COR" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V22

"R01-Z01-191-COR" = EXTERIOR-WALL
CONSTRUCTION = "R-TYP-CONS"
X = 13
Y = -4
Z = 25
LOCATION = TOP
POLYGON = "Z01-101-COR-ROOF-XY"

"UF01-Z01-191-COR" = UNDERGROUND-WALL
CONSTRUCTION = "UF-TYP-CONS"
U-EFFECTIVE = 0.049
LOCATION = BOTTOM

"Z02-195-RR" = SPACE
SHAPE = POLYGON
PEOPLE-SCHEDULE = "OCC-COR-ANNUAL"
LIGHTING-SCHEDULE = ("LITE-COR-ANNUAL")
EQUIP-SCHEDULE = ("EQP-COR-ANNUAL")
INF-SCHEDULE = "INF-ALL-ANNUAL"
LIGHTING-TYPE = (REC-FLUOR-NV)
INF-METHOD = AIR-CHANGE
PEOPLE-HG-LAT = 250
PEOPLE-HG-SENS = 250
NUMBER-OF-PEOPLE = 1
LIGHTING-W/AREA = (0.93)
EQUIPMENT-W/AREA = (0.07)
POLYGON = "Z02-195-RR-XY"

"Z03-199-STO" = SPACE
SHAPE = POLYGON
PEOPLE-SCHEDULE = "OCC-MECH-ANNUAL"
LIGHTING-SCHEDULE = ("LITE-MECH-ANNUAL")
EQUIP-SCHEDULE = ("EQP-MECH-ANNUAL")
INF-SCHEDULE = "INF-ALL-ANNUAL"
LIGHTING-TYPE = (REC-FLUOR-NV)
INF-METHOD = AIR-CHANGE
PEOPLE-HG-LAT = 250
PEOPLE-HG-SENS = 250
NUMBER-OF-PEOPLE = 1
LIGHTING-W/AREA = (0.98)
EQUIPMENT-W/AREA = (0.07)
POLYGON = "Z03-199-STO-XY"

"Z04-191-COR" = SPACE
SHAPE = POLYGON
PEOPLE-SCHEDULE = "OCC-COR-ANNUAL"
LIGHTING-SCHEDULE = ("LITE-COR-ANNUAL")
EQUIP-SCHEDULE = ("EQP-COR-ANNUAL")
INF-SCHEDULE = "INF-ALL-ANNUAL"
LIGHTING-TYPE = (REC-FLUOR-NV)
INF-METHOD = AIR-CHANGE
AIR-CHANGES/HR = 0.2
PEOPLE-HG-LAT = 250
PEOPLE-HG-SENS = 250
NUMBER-OF-PEOPLE = 3
LIGHTING-W/AREA = (0.76)
EQUIPMENT-W/AREA = (0.07)
POLYGON = "Z04-191-COR-XY"

"W01-Z04-191-COR" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V4

"WIN01-W01-Z04-191-COR" = WINDOW
GLASS-TYPE = "TYP-GLASS-2"
X = 1
HEIGHT = 7
WIDTH = 6
OVERHANG-D = 4

"W02-Z04-191-COR" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V5

"W03-Z04-191-COR" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V6

"UF01-Z04-191-COR" = UNDERGROUND-WALL
CONSTRUCTION = "UF-TYP-CONS"
U-EFFECTIVE = 0.0086
LOCATION = BOTTOM

"Z05-10A-CLA" = SPACE
SHAPE = POLYGON
PEOPLE-SCHEDULE = "OCC-CLASS-ANNUAL"
LIGHTING-SCHEDULE = ("LITE-CLASS-ANNUAL")
EQUIP-SCHEDULE = ("EQP-CLASS-ANNUAL")
INF-SCHEDULE = "INF-ALL-ANNUAL"
LIGHTING-TYPE = (REC-FLUOR-NV)
INF-METHOD = AIR-CHANGE
PEOPLE-HG-LAT = 250
PEOPLE-HG-SENS = 250
NUMBER-OF-PEOPLE = 17
LIGHTING-W/AREA = (0.83)
EQUIPMENT-W/AREA = (0.487)
POLYGON = "Z05-10A-CLA-XY"

"Z06-10B-CLA" = SPACE
SHAPE = POLYGON
PEOPLE-SCHEDULE = "OCC-CLASS-ANNUAL"
LIGHTING-SCHEDULE = ("LITE-CLASS-ANNUAL")
EQUIP-SCHEDULE = ("EQP-CLASS-ANNUAL")
INF-SCHEDULE = "INF-ALL-ANNUAL"
LIGHTING-TYPE = (REC-FLUOR-NV)
INF-METHOD = AIR-CHANGE
PEOPLE-HG-LAT = 250
PEOPLE-HG-SENS = 250
NUMBER-OF-PEOPLE = 17
LIGHTING-W/AREA = (0.83)
EQUIPMENT-W/AREA = (0.487)
POLYGON = "206-10B-CLA-XY"

"207-110-CLAB" = SPACE
SHAPE = POLYGON
PEOPLE-SCHEDULE = "OCC-CLASS-ANNUAL"
LIGHTING-SCHEDULE = ("LITE-CLASS-ANNUAL")
EQUIP-SCHEDULE = ("EQP-CLASS-ANNUAL")
INF-SCHEDULE = "INF-ALL-ANNUAL"
LIGHTING-TYPE = (REC-FLUOR-NV)
INF-METHOD = AIR-CHANGE
PEOPLE-HG-LAT = 250
PEOPLE-HG-SENS = 250
NUMBER-OF-PEOPLE = 8
LIGHTING-W/AREA = (1.15)
EQUIPMENT-W/AREA = (0.752)
POLYGON = "207-110-CLAB-XY"

"208-127-CLAB" = SPACE
SHAPE = POLYGON
PEOPLE-SCHEDULE = "OCC-CLASS-ANNUAL"
LIGHTING-SCHEDULE = ("LITE-CLASS-ANNUAL")
EQUIP-SCHEDULE = ("EQP-CLASS-ANNUAL")
INF-SCHEDULE = "INF-ALL-ANNUAL"
LIGHTING-TYPE = (REC-FLUOR-NV)
INF-METHOD = AIR-CHANGE
PEOPLE-HG-LAT = 250
PEOPLE-HG-SENS = 250
NUMBER-OF-PEOPLE = 8
LIGHTING-W/AREA = (1.15)
EQUIPMENT-W/AREA = (0.752)
POLYGON = "208-127-CLAB-XY"

"209-112-CLAB" = SPACE
SHAPE = POLYGON
PEOPLE-SCHEDULE = "OCC-CLASS-ANNUAL"
LIGHTING-SCHEDULE = ("LITE-CLASS-ANNUAL")
EQUIP-SCHEDULE = ("EQP-CLASS-ANNUAL")
INF-SCHEDULE = "INF-ALL-ANNUAL"
LIGHTING-TYPE = (REC-FLUOR-NV)
INF-METHOD = AIR-CHANGE
PEOPLE-HG-LAT = 250
PEOPLE-HG-SENS = 250
NUMBER-OF-PEOPLE = 12
LIGHTING-W/AREA = (1.09)
EQUIPMENT-W/AREA = (0.71)
POLYGON = "209-112-CLAB-XY"

"210-125-CLAB" = SPACE
SHAPE = POLYGON
PEOPLE-SCHEDULE = "OCC-CLASS-ANNUAL"
LIGHTING-SCHEDUL = ("LITE-CLASS-ANNUAL")
EQUIP-SCHEDULE = ("EQP-CLASS-ANNUAL")
INF-SCHEDULE = "INF-ALL-ANNUAL"
LIGHTING-TYPE = (REC-FLUOR-NV)
INF-METHOD = AIR-CHANGE
PEOPLE-HG-LAT = 250
PEOPLE-HG-SENS = 250
NUMBER-OF-PEOPLE = 12
LIGHTING-W/AREA = (1.09)
EQUIPMENT-W/AREA = (0.71)
POLYGON = "Z10-125-CLAB-XY"

"Z11-130-OFC" = SPACE
SHAPE = POLYGON
PEOPLE-SCHEDULE = "OCC-OFC-ANNUAL"
LIGHTING-SCHEDUL = ("LITE-OFC-ANNUAL")
EQUIP-SCHEDULE = ("EQP-OFC-ANNUAL")
INF-SCHEDULE = "INF-ALL-ANNUAL"
LIGHTING-TYPE = (REC-FLUOR-NV)
INF-METHOD = AIR-CHANGE
AIR-CHANGES/HR = 0.2
PEOPLE-HG-LAT = 250
PEOPLE-HG-SENS = 250
NUMBER-OF-PEOPLE = 6
LIGHTING-W/AREA = (1.16)
EQUIPMENT-W/AREA = (1.462)
POLYGON = "Z11-130-OFC-XY"

"W01-Z11-130-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V1

"W02-Z11-130-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V2

"W03-Z11-130-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V3

"WIN01-W03-Z11-130-OFC" = WINDOW
GLASS-TYPE = "TYP-GLASS-1"
Y = 3.5
HEIGHT = 5
WIDTH = 2.5

"WIN02-W03-Z11-130-OFC" = WINDOW
GLASS-TYPE = "TYP-GLASS-1"
X = 4.5
Y = 3.5
HEIGHT = 5
WIDTH = 2.5

"W04-Z11-130-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V4

..
"W05-Z11-130-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V5

"WIN01-W05-Z11-130-OFC" = WINDOW
GLASS-TYPE = "TYP-GLASS-1"
X = 5
Y = 3.5
HEIGHT = 5
WIDTH = 2

"W06-Z11-130-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V6

"WIN01-W06-Z11-130-OFC" = WINDOW
GLASS-TYPE = "TYP-GLASS-2"
X = 0
Y = 3.5
HEIGHT = 5
WIDTH = 0.5
SETBACK = 0

"WIN02-W06-Z11-130-OFC" = WINDOW
GLASS-TYPE = "TYP-GLASS-2"
X = 2.5
Y = 3.5
HEIGHT = 5
WIDTH = 0.5
SETBACK = 0

"W07-Z11-130-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V7

"WIN01-W07-Z11-130-OFC" = WINDOW
GLASS-TYPE = "TYP-GLASS-1"
Y = 3.5
HEIGHT = 5
WIDTH = 2

"W08-Z11-130-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V8

"W09-Z11-130-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V9

"WIN01-W09-Z11-130-OFC" = WINDOW
GLASS-TYPE = "TYP-GLASS-1"
X = 3
Y = 3.5
HEIGHT = 5
WIDTH = 2.5

"W10-Z11-130-OFC" = EXTERIOR-WALL

..
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V10

"WIN01-W10-Z11-130-OFC" = WINDOW
GLASS-TYPE = "TYP-GLASS-2"
X = 0.5
Y = 3.5
HEIGHT = 5
WIDTH = 2.5
SETBACK = 0

"W11-Z11-130-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V11

"W12-Z11-130-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V12

"W13-Z11-130-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V13

"WIN01-W13-Z11-130-OFC" = WINDOW
GLASS-TYPE = "TYP-GLASS-1"
X = 3
Y = 3.5
HEIGHT = 5
WIDTH = 2.5

"W14-Z11-130-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V14

"WIN01-W14-Z11-130-OFC" = WINDOW
GLASS-TYPE = "TYP-GLASS-2"
X = 0.5
Y = 3.5
HEIGHT = 5
WIDTH = 2.5
SETBACK = 0

"W15-Z11-130-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V15

"UF01-Z11-130-OFC" = UNDERGROUND-WALL
CONSTRUCTION = "UF-TYP-CONS"
U-EFFECTIVE = 0.0429
LOCATION = BOTTOM

"Z12-126-OFC" = SPACE
SHAPE = POLYGON
PEOPLE-SCHEDULE = "OCC-OFC-ANNUAL"
LIGHTING-SCHEDULE = ("LITE-OFC-ANNUAL")
EQUIP-SCHEDULE = ("EQP-OFC-ANNUAL")
INF-SCHEDULE = "INF-ALL-ANNUAL"
LIGHTING-TYPE = (REC-FLUOR-NV)
INF-METHOD = AIR-CHANGE
AIR-CHANGES/HR = 0.2
PEOPLE-HG-LAT = 250
PEOPLE-HG-SENS = 250
NUMBER-OF-PEOPLE = 1
LIGHTING-W/AREA = (0.711)
EQUIPMENT-W/AREA = (0.835)
POLYGON = "212-126-OFC-XY"

"W01-Z12-126-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V1

"W02-Z12-126-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V2

"W03-Z12-126-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V3

"W04-Z12-126-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V4

"WIN01-W04-Z12-126-OFC" = WINDOW
GLASS-TYPE = "TYP-GLASS-1"
X = 3
Y = 3.5
HEIGHT = 5
WIDTH = 5

"W05-Z12-126-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V5

"W06-Z12-126-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V6

"UF01-Z12-126-OFC" = UNDERGROUND-WALL
CONSTRUCTION = "UF-TYP-CONS"
U-EFFECTIVE = 0.0804
LOCATION = BOTTOM

"Z13-120-OFC" = SPACE
SHAPE = POLYGON
PEOPLE-SCHEDULE = "OCC-OFC-ANNUAL"
LIGHTING-SCHEDUL = ("LITE-OFC-ANNUAL")
EQUIP-SCHEDULE = ("EQP-OFC-ANNUAL")
INF-SCHEDULE = "INF-ALL-ANNUAL"
LIGHTING-TYPE = (REC-FLUOR-NV)
INF-METHOD = AIR-CHANGE
AIR-CHANGES/HR = 0.2
PEOPLE-HG-LAT = 250
PEOPLE-HG-SENS = 250
NUMBER-OF-PEOPLE = 5
LIGHTING-W/AREA = (1.02)
EQUIPMENT-W/AREA = (0.975)
POLYGON = "213-120-OFC-XY"

"W01-Z13-120-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V2

"W02-Z13-120-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V3

"W03-Z13-120-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V4

"WIN01-W03-Z13-120-OFC" = WINDOW
GLASS-TYPE = "TYP-GLASS-1"
X = 4
Y = 3.5
HEIGHT = 5
WIDTH = 2.5

"W04-Z13-120-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V5

"WIN01-W04-Z13-120-OFC" = WINDOW
GLASS-TYPE = "TYP-GLASS-2"
X = 0.5
Y = 3.5
HEIGHT = 5
WIDTH = 2.5
SETBACK = 0

"W05-Z13-120-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V6

"W06-Z13-120-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V7

"W07-Z13-120-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V8

"W08-Z13-120-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V9

"W09-Z13-120-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V10

"WIN01-W09-Z13-120-OFC" = WINDOW
GLASS-TYPE = "TYP-GLASS-1"
X = 1
Y = 3.5
HEIGHT = 5
WIDTH = 2.5

"WIN02-W09-Z13-120-OFC" = WINDOW
GLASS-TYPE = "TYP-GLASS-1"
X = 5.5
Y = 3.5
HEIGHT = 5
WIDTH = 2.5

"W10-Z13-120-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V11

"W11-Z13-120-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V12

"W12-Z13-120-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V13

"W13-Z13-120-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V14

"WIN01-W13-Z13-120-OFC" = WINDOW
GLASS-TYPE = "TYP-GLASS-1"
Y = 3.5
HEIGHT = 5
WIDTH = 2.5

"WIN02-W13-Z13-120-OFC" = WINDOW
GLASS-TYPE = "TYP-GLASS-1"
X = 5.5
Y = 3.5
HEIGHT = 5
WIDTH = 2.5

"W14-Z13-120-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V15

"W15-Z13-120-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V16

"UF01-Z13-120-OFC" = UNDERGROUND-WALL
CONSTRUCTION = "UF-TYP-CONS"
U-EFFECTIVE = 0.0429
LOCATION = BOTTOM

"Z14-199-DATA" = SPACE
SHAPE = POLYGON
PEOPLE-SCHEDULE = "OCC-MECH-ANNUAL"
LIGHTING-SCHEDULE = ("LITE-MECH-ANNUAL")
EQUIP-SCHEDULE = ("EQP-MECH-ANNUAL")
INF-SCHEDULE = "INF-ALL-ANNUAL"
LIGHTING-TYPE = ("REC-FLUOR-NV")
INF-METHOD = "AIR-CHANGE"
PEOPLE-HG-LAT = 250
PEOPLE-HG-SENS = 250
NUMBER-OF-PEOPLE = 1
LIGHTING-W/AREA = (1.3)
EQUIPMENT-W/AREA = (4.136)
POLYGON = "Z14-199-DATA-XY"

"Floor-2" = FLOOR
 Z = 14
POLYGON = "Floor-2-XY"
SHAPE = POLYGON
FLOOR-HEIGHT = 18
SPACE-HEIGHT = 18
C-DIAGRAM-DATA = "Bldg Envelope & Loads 1 Diag Data"

"215-293-COR" = SPACE
SHAPE = POLYGON
PEOPLE-SCHEDULE = "OCC-COR-ANNUAL"
LIGHTING-SCHEDULE = ("LITE-COR-ANNUAL")
EQUIP-SCHEDULE = ("EQP-COR-ANNUAL")
INF-SCHEDULE = "INF-ALL-ANNUAL"
LIGHTING-TYPE = ("REC-FLUOR-NV")
INF-METHOD = "AIR-CHANGE"
AIR-CHANGES/HR = 0.2
PEOPLE-HG-LAT = 250
PEOPLE-HG-SENS = 250
NUMBER-OF-PEOPLE = 2
LIGHTING-W/AREA = (0.57)
EQUIPMENT-W/AREA = (0.07)
POLYGON = "215-293-COR-XY"

"W01-W03-215-293-COR" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
WIDTH = 14
LOCATION = SPACE-V1

"W03-215-293-COR" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V8

"WIN01-W03-215-293-COR" = WINDOW
GLASS-TYPE = "TYP-GLASS-2"
X = 59
Y = 3.5
HEIGHT = 5
WIDTH = 2.5
SETBACK = 0

"WIN02-W03-215-293-COR" = WINDOW
GLASS-TYPE = "TYP-GLASS-2"
X = 63.5
Y = 3.5
HEIGHT = 5
WIDTH = 2.5
SETBACK = 0

"W04-Z15-293-COR" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V9

"W05-Z15-293-COR" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V10

"R01-Z15-293-COR" = EXTERIOR-WALL
CONSTRUCTION = "R-TYP-CONS"
LOCATION = TOP

"Z16-295-RR" = SPACE
SHAPE = POLYGON
PEOPLE-SCHEDULE = "OCC-COR-ANNUAL"
LIGHTING-SCHEDULE = ("LITE-COR-ANNUAL")
EQUIP-SCHEDULE = ("EQP-COR-ANNUAL")
INF-SCHEDULE = "INF-ALL-ANNUAL"
LIGHTING-TYPE = (REC-FLUOR-NV)
INF-METHOD = AIR-CHANGE
PEOPLE-HG-LAT = 250
PEOPLE-HG-SENS = 250
NUMBER-OF-PEOPLE = 1
LIGHTING-W/AREA = (0.93)
EQUIPMENT-W/AREA = (0.07)
POLYGON = "Z16-295-RR-XY"

"R01-Z16-295-RR" = EXTERIOR-WALL
CONSTRUCTION = "R-TYP-CONS"
LOCATION = TOP

"Z17-299-DATA" = SPACE
SHAPE = POLYGON
PEOPLE-SCHEDULE = "OCC-MECH-ANNUAL"
LIGHTING-SCHEDULE = ("LITE-MECH-ANNUAL")
EQUIP-SCHEDULE = ("EQP-MECH-ANNUAL")
INF-SCHEDULE = "INF-ALL-ANNUAL"
LIGHTING-TYPE = (REC-FLUOR-NV)
INF-METHOD = AIR-CHANGE
PEOPLE-HG-LAT = 250
PEOPLE-HG-SENS = 250
NUMBER-OF-PEOPLE = 1
LIGHTING-W/AREA = (1.3)
EQUIPMENT-W/AREA = (4.136)
POLYGON = "Z17-299-DATA-XY"

"R01-Z17-299-DATA" = EXTERIOR-WALL
CONSTRUCTION = "R-TYP-CONS"
LOCATION = TOP

"Z18-209-OFC" = SPACE
SHAPE = POLYGON
PEOPLE-SCHEDULE = "OCC-OF-C-ANNUAL"
LIGHTING-SCHEDULE = ("LITE-OF-C-ANNUAL")
EQUIP-SCHEDULE = ("EQP-OF-C-ANNUAL")
INF-SCHEDULE = "INF-ALL-ANNUAL"
LIGHTING-TYPE = (REC-FLUOR-NV)
INF-METHOD = AIR-CHANGE
AIR-CHANGES/HR = 0.2
PEOPLE-HG-LAT = 250
PEOPLE-HG-SENS = 250
NUMBER-OF-PEOPLE = 3
LIGHTING-W/AREA = (1.22)
EQUIPMENT-W/AREA = (1.601)
POLYGON = "Z18-209-OF-C-XY"

"R01-Z18-209-OF-C" = EXTERIOR-WALL
CONSTRUCTION = "R-TYP-CONS"
LOCATION = TOP

"Z19-291-COR" = SPACE
SHAPE = POLYGON
PEOPLE-SCHEDULE = "OCC-COR-ANNUAL"
LIGHTING-SCHEDULE = ("LITE-COR-ANNUAL")
EQUIP-SCHEDULE = ("EQP-COR-ANNUAL")
INF-SCHEDULE = "INF-ALL-ANNUAL"
LIGHTING-TYPE = (REC-FLUOR-NV)
INF-METHOD = AIR-CHANGE
PEOPLE-HG-LAT = 250
PEOPLE-HG-SENS = 250
NUMBER-OF-PEOPLE = 3
LIGHTING-W/AREA = (0.64)
EQUIPMENT-W/AREA = (0.07)
POLYGON = "Z19-291-COR-XY"

"R01-Z19-291-COR" = EXTERIOR-WALL
CONSTRUCTION = "R-TYP-CONS"
LOCATION = TOP

"Z20-206-CLAB" = SPACE
SHAPE = POLYGON
PEOPLE-SCHEDULE = "OCC-CLASS-ANNUAL"
LIGHTING-SCHEDULE = ("LITE-CLASS-ANNUAL")
EQUIP-SCHEDULE = ("EQP-CLASS-ANNUAL")
INF-SCHEDULE = "INF-ALL-ANNUAL"
LIGHTING-TYPE = (REC-FLUOR-NV)
INF-METHOD = AIR-CHANGE
PEOPLE-HG-LAT = 250
PEOPLE-HG-SENS = 250
NUMBER-OF-PEOPLE = 8
LIGHTING-W/AREA = (1.15)
EQUIPMENT-W/AREA = (0.446)
POLYGON = "Z20-206-CLAB-XY"

"R01-Z20-206-CLAB" = EXTERIOR-WALL
CONSTRUCTION = "R-TYP-CONS"
LOCATION = TOP

"Z21-212-LEARN" = SPACE
SHAPE = POLYGON
PEOPLE-SCHEDULE = "OCC-CLASS-ANNUAL"
LIGHTING-SCHEDULE = ("LITE-CLASS-ANNUAL")
EQUIP-SCHEDULE = ("EQP-CLASS-ANNUAL")
INF-SCHEDULE = "INF-ALL-ANNUAL"
LIGHTING-TYPE = (REC-FLUOR-NV)
INF-METHOD = AIR-CHANGE
PEOPLE-HG-LAT = 250
PEOPLE-HG-SENS = 250
NUMBER-OF-PEOPLE = 8
LIGHTING-W/AREA = (1.15)
EQUIPMENT-W/AREA = (1.518)
POLYGON = "Z21-212-LEARN-XY"
...
"R01-Z21-212-LEARN" = EXTERIOR-WALL
CONSTRUCTION = "R-TYP-CONS"
LOCATION = TOP
...
"Z22-208-CLAB" = SPACE
SHAPE = POLYGON
PEOPLE-SCHEDULE = "OCC-CLASS-ANNUAL"
LIGHTING-SCHEDULE = ("LITE-CLASS-ANNUAL")
EQUIP-SCHEDULE = ("EQP-CLASS-ANNUAL")
INF-SCHEDULE = "INF-ALL-ANNUAL"
LIGHTING-TYPE = (REC-FLUOR-NV)
INF-METHOD = AIR-CHANGE
PEOPLE-HG-LAT = 250
PEOPLE-HG-SENS = 250
NUMBER-OF-PEOPLE = 16
LIGHTING-W/AREA = (1.09)
EQUIPMENT-W/AREA = (0.71)
POLYGON = "Z22-208-CLAB-XY"
...
"R01-Z22-208-CLAB" = EXTERIOR-WALL
CONSTRUCTION = "R-TYP-CONS"
LOCATION = TOP
...
"Z23-212-LEARN" = SPACE
SHAPE = POLYGON
PEOPLE-SCHEDULE = "OCC-CLASS-ANNUAL"
LIGHTING-SCHEDULE = ("LITE-CLASS-ANNUAL")
EQUIP-SCHEDULE = ("EQP-CLASS-ANNUAL")
INF-SCHEDULE = "INF-ALL-ANNUAL"
LIGHTING-TYPE = (REC-FLUOR-NV)
INF-METHOD = AIR-CHANGE
PEOPLE-HG-LAT = 250
PEOPLE-HG-SENS = 250
NUMBER-OF-PEOPLE = 10
LIGHTING-W/AREA = (1.14)
EQUIPMENT-W/AREA = (1.518)
POLYGON = "Z23-212-LEARN-XY"
...
"R01-Z23-212-LEARN" = EXTERIOR-WALL
CONSTRUCTION = "R-TYP-CONS"
LOCATION = TOP
...
"Z24-210-OFC" = SPACE
SHAPE = POLYGON
PEOPLE-SCHEDULE = "OCC-OFC-ANNUAL"
LIGHTING-SCHEDULE = ("LITE-OFC-ANNUAL")
EQUIP-SCHEDULE = ("EQP-OFC-ANNUAL")
INF-SCHEDULE = "INF-ALL-ANNUAL"
LIGHTING-TYPE = (REC-FLUOR-NV)
INF-METHOD = AIR-CHANGE
PEOPLE-HG-LAT = 250
PEOPLE-HG-SENS = 250
NUMBER-OF-PEOPLE = 3
LIGHTING-W/AREA = (0.87)
EQUIPMENT-W/AREA = (1.532)
POLYGON = "Z24-210-OFC-XY"

"R01-Z24-210-OFC" = EXTERIOR-WALL
CONSTRUCTION = "R-TYP-CONS"
LOCATION = TOP

"Z25-212-MEDIA" = SPACE
SHAPE = POLYGON
PEOPLE-SCHEDULE = "OCC-CLASS-ANNUAL"
LIGHTING-SCHEDULE = ("LITE-CLASS-ANNUAL")
EQUIP-SCHEDULE = ("EQP-CLASS-ANNUAL")
INF-SCHEDULE = "INF-ALL-ANNUAL"
LIGHTING-TYPE = (REC-FLUOR-NV)
INF-METHOD = AIR-CHANGE
PEOPLE-HG-LAT = 250
PEOPLE-HG-SENS = 250
NUMBER-OF-PEOPLE = 1
LIGHTING-W/AREA = (0.89)
EQUIPMENT-W/AREA = (2.117)
POLYGON = "Z25-212-MEDIA-XY"

"R01-Z25-212-MEDIA" = EXTERIOR-WALL
CONSTRUCTION = "R-TYP-CONS"
LOCATION = TOP

"Z26-211-FUND" = SPACE
SHAPE = POLYGON
PEOPLE-SCHEDULE = "OCC-CLASS-ANNUAL"
LIGHTING-SCHEDULE = ("LITE-CLASS-ANNUAL")
EQUIP-SCHEDULE = ("EQP-CLASS-ANNUAL")
INF-SCHEDULE = "INF-ALL-ANNUAL"
LIGHTING-TYPE = (REC-FLUOR-NV)
INF-METHOD = AIR-CHANGE
AIR-CHANGES/HR = 0.2
PEOPLE-HG-LAT = 250
PEOPLE-HG-SENS = 250
NUMBER-OF-PEOPLE = 20
LIGHTING-W/AREA = (1.28)
EQUIPMENT-W/AREA = (1.309)
POLYGON = "Z26-211-FUND-XY"

"W01-Z26-211-FUND" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V2
"WIN01-W01-Z26-211-FUND" = WINDOW
 GLASS-TYPE = "TYP-GLASS-2"
 X = 6
 Y = 3.5
 HEIGHT = 3
 WIDTH = 2.5
 SETBACK = 0
...
"WIN03-W01-Z26-211-FUND" = WINDOW
 GLASS-TYPE = "TYP-GLASS-2"
 X = 27
 Y = 3.5
 HEIGHT = 3
 WIDTH = 2.5
 SETBACK = 0
...
"WIN02-W01-Z26-211-FUND" = WINDOW
 GLASS-TYPE = "TYP-GLASS-2"
 X = 10.5
 Y = 3.5
 HEIGHT = 3
 WIDTH = 2.5
 SETBACK = 0
...
"WIN04-W01-Z26-211-FUND" = WINDOW
 GLASS-TYPE = "TYP-GLASS-2"
 X = 31.5
 Y = 3.5
 HEIGHT = 3
 WIDTH = 2.5
 SETBACK = 0
...
"W02-Z26-211-FUND" = EXTERIOR-WALL
 CONSTRUCTION = "W-BRICK-CONS"
 LOCATION = SPACE-V3
...
"W03-Z26-211-FUND" = EXTERIOR-WALL
 CONSTRUCTION = "W-BRICK-CONS"
 LOCATION = SPACE-V4
...
"R01-Z26-211-FUND" = EXTERIOR-WALL
 CONSTRUCTION = "R-TYP-CONS"
 LOCATION = TOP
...
"Z27-215-BEDLAB" = SPACE
 SHAPE = POLYGON
 PEOPLE-SCHEDULE = "OCC-CLASS-ANNUAL"
 LIGHTING-SCHEDULE = ("LITE-CLASS-ANNUAL")
 EQUIP-SCHEDULE = ("EQP-CLASS-ANNUAL")
 INF-SCHEDULE = "INF-ALL-ANNUAL"
 LIGHTING-TYPE = (REC-FLUOR-NV)
 INF-METHOD = AIR-CHANGE
 AIR-CHANGES/HR = 0.2
 PEOPLE-HG-LAT = 250
 PEOPLE-HG-SENS = 250
 NUMBER-OF-PEOPLE = 20
 LIGHTING-W/AREA = (1.61)
EQUIPMENT-W/AREA = (1.448)
POLYGON = "Z27-215-BEDLAB-XY"

"W01-Z27-215-BEDLAB" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V2

"WIN01-W01-Z27-215-BEDLAB" = WINDOW
GLASS-TYPE = "TYP-GLASS-2"
X = 15
Y = 3.5
HEIGHT = 3
WIDTH = 2.5
SETBACK = 0

"WIN02-W01-Z27-215-BEDLAB" = WINDOW
GLASS-TYPE = "TYP-GLASS-2"
X = 20.5
Y = 3.5
HEIGHT = 3
WIDTH = 2.5
SETBACK = 0

"R01-Z27-215-BEDLAB" = EXTERIOR-WALL
CONSTRUCTION = "R-TYP-CONS"
LOCATION = TOP

"Z28-217-LOUNGE" = SPACE
SHAPE = POLYGON
PEOPLE-SCHEDULE = "OCC-CLASS-ANNUAL"
LIGHTING-SCHEDUL = ("LITE-CLASS-ANNUAL")
EQUIP-SCHEDULE = ("EQP-CLASS-ANNUAL")
INF-SCHEDULE = "INF-ALL-ANNUAL"
LIGHTING-TYPE = (REC-FLUOR-NV)
INF-METHOD = AIR-CHANGE
AIR-CHANGES/HR = 0.2
PEOPLE-HG-LAT = 250
PEOPLE-HG-SENS = 250
NUMBER-OF-PEOPLE = 6
LIGHTING-W/AREA = (1.57)
EQUIPMENT-W/AREA = (1.156)
DAYLIGHTING = YES
LIGHT-REF-POINT1 = (80, 7, 9)
LIGHT-REF-POINT2 = (105, 7, 9)
ZONE-FRACTION1 = 0.5
ZONE-FRACTION2 = 0.5
VIEW-AZIMUTH = 180
POLYGON = "Z28-217-LOUNGE-XY"

"W01-Z28-217-LOUNGE" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V1

"WIN01-W01-Z28-217-LOUNGE" = WINDOW
GLASS-TYPE = "TYP-GLASS-2"
X = 0
Y = 3.5
HEIGHT = 5
WIDTH = 2.5
SETBACK = 0

"W02-Z28-217-LOUNGE" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V2

"WIN01-W02-Z28-217-LOUNGE" = WINDOW
GLASS-TYPE = "TYP-GLASS-1"
X = 0.5
Y = 3.5
HEIGHT = 5
WIDTH = 2.5

"W03-Z28-217-LOUNGE" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V3

"W04-Z28-217-LOUNGE" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
Z = 3
HEIGHT = 15
LOCATION = SPACE-V4

"WIN02-W01-Z28-217-LOUNGE" = WINDOW
GLASS-TYPE = "TYP-GLASS-2"
X = 6
Y = 0
HEIGHT = 9
WIDTH = 26
SETBACK = 0
OVERHANG-B = -1.5
OVERHANG-W = 29
OVERHANG-D = 2

"W05-Z28-217-LOUNGE" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
Z = 3
HEIGHT = 15
LOCATION = SPACE-V5

"WIN01-W05-Z28-217-LOUNGE" = WINDOW
GLASS-TYPE = "TYP-GLASS-2"
Y = 0
HEIGHT = 9
WIDTH = 14
SETBACK = 0
OVERHANG-A = 2
OVERHANG-B = -1.5
OVERHANG-W = 17
OVERHANG-D = 2

"R01-Z28-217-LOUNGE" = EXTERIOR-WALL
CONSTRUCTION = "R-TYP-CONS"
LOCATION = TOP
"W04A-Z28-217-LOUNGE" = EXTERIOR-WALL
CONSTRUCTION = "W-SPANDREL-CONS"
HEIGHT = 3
LOCATION = SPACE-V4

"W05A-Z28-217-LOUNGE" = EXTERIOR-WALL
CONSTRUCTION = "W-SPANDREL-CONS"
HEIGHT = 3
LOCATION = SPACE-V5

"IW01-Z28-217-LOUNGE" = INTERIOR-WALL
NEXT-TO = "Z27-215-BEDLAB"
CONSTRUCTION = "IW-TYP-CONS"
LOCATION = SPACE-V6

"IW02-Z28-217-LOUNGE" = INTERIOR-WALL
NEXT-TO = "Z29-223-OFC"
CONSTRUCTION = "IW-TYP-CONS"
LOCATION = SPACE-V7

"Z29-223-OFC" = SPACE
SHAPE = POLYGON
PEOPLE-SCHEDULE = "OCC-OFC-ANNUAL"
LIGHTING-SCHEDULE = ("LITE-OFC-ANNUAL")
EQUIP-SCHEDULE = ("EQP-OFC-ANNUAL")
INF-SCHEDULE = "INF-ALL-ANNUAL"
LIGHTING-TYPE = (REC-FLUOR-NV)
INF-METHOD = AIR-CHANGE
AIR-CHANGES/HR = 0.2
PEOPLE-HG-LAT = 250
PEOPLE-HG-SENS = 250
NUMBER-OF-PEOPLE = 6
LIGHTING-W/AREA = (1.14)
EQUIPMENT-W/AREA = (1.337)
POLYGON = "Z29-223-OFC-XY"

"W06-Z29-223-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V6

"W07-Z29-223-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V7

"W08-Z29-223-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V8

"WIN01-W08-Z29-223-OFC" = WINDOW
GLASS-TYPE = "TYP-GLASS-2"
X = 0
Y = 3.5
HEIGHT = 5
WIDTH = 2.5
SETBACK = 0

"WIN02-W08-Z29-223-OFC" = WINDOW
GLASS-TYPE = "TYP-GLASS-2"
X = 4.5
Y = 3.5
HEIGHT = 5
WIDTH = 2.5
SETBACK = 0

"W09-Z29-223-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V9

"W10-Z29-223-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V10

"WIN01-W10-Z29-223-OFC" = WINDOW
GLASS-TYPE = "TYP-GLASS-2"
X = 5
Y = 3.5
HEIGHT = 5
WIDTH = 2
SETBACK = 0

"W11-Z29-223-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V11

"WIN01-W11-Z29-223-OFC" = WINDOW
GLASS-TYPE = "TYP-GLASS-1"
Y = 3.5
HEIGHT = 5
WIDTH = 0.5

"WIN02-W11-Z29-223-OFC" = WINDOW
GLASS-TYPE = "TYP-GLASS-1"
X = 2.5
Y = 3.5
HEIGHT = 5
WIDTH = 0.5

"W12-Z29-223-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V12

"WIN01-W12-Z29-223-OFC" = WINDOW
GLASS-TYPE = "TYP-GLASS-1"
Y = 3.5
HEIGHT = 5
WIDTH = 2

"W13-Z29-223-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V13

"W14-Z29-223-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V14
"R01-Z29-223-OFC" = EXTERIOR-WALL
 CONSTRUCTION = "R-TYP-CONS"
 LOCATION = TOP

"W01-Z29-223-OFC" = EXTERIOR-WALL
 CONSTRUCTION = "W-BRICK-CONS"
 Y = -0.02
 Z = 11
 HEIGHT = 7
 LOCATION = SPACE-V1

"W02-Z29-223-OFC" = EXTERIOR-WALL
 CONSTRUCTION = "W-BRICK-CONS"
 Y = -0.02
 Z = 11
 HEIGHT = 7
 LOCATION = SPACE-V2

"W03-Z29-223-OFC" = EXTERIOR-WALL
 CONSTRUCTION = "W-BRICK-CONS"
 Y = -0.02
 Z = 11
 HEIGHT = 7
 LOCATION = SPACE-V3

"W04-Z29-223-OFC" = EXTERIOR-WALL
 CONSTRUCTION = "W-BRICK-CONS"
 Y = -0.02
 Z = 11
 HEIGHT = 7
 LOCATION = SPACE-V4

"W05-Z29-223-OFC" = EXTERIOR-WALL
 CONSTRUCTION = "W-BRICK-CONS"
 Y = -0.02
 Z = 11
 HEIGHT = 7
 LOCATION = SPACE-V5

"IW01-Z29-223-OFC" = INTERIOR-WALL
 NEXT-TO = "Z01-191-COR"
 CONSTRUCTION = "IW-TYP-CONS"
 HEIGHT = 11
 LOCATION = SPACE-V1

"IW02-Z29-223-OFC" = INTERIOR-WALL
 NEXT-TO = "Z01-191-COR"
 CONSTRUCTION = "IW-TYP-CONS"
 HEIGHT = 11
 LOCATION = SPACE-V2

"IWIN01-IW02-Z29-223-OFC" = WINDOW
 GLASS-TYPE = "TYP-GLASS-2"
 Y = 3.5
 HEIGHT = 5
 WIDTH = 2.5
"IW03-Z29-223-OFC" = INTERIOR-WALL
 NEXT-TO = "Z01-191-COR"
 CONSTRUCTION = "IW-TYP-CONS"
 HEIGHT = 11
 LOCATION = SPACE-V3

"IW04-Z29-223-OFC" = INTERIOR-WALL
 NEXT-TO = "Z01-191-COR"
 CONSTRUCTION = "IW-TYP-CONS"
 HEIGHT = 11
 LOCATION = SPACE-V4

"IWIN01-IW04-Z29-223-OFC" = WINDOW
 GLASS-TYPE = "TYP-GLASS-2"
 Y = 3.5
 HEIGHT = 5
 WIDTH = 2.5

"IW05-Z29-223-OFC" = INTERIOR-WALL
 NEXT-TO = "Z01-191-COR"
 CONSTRUCTION = "IW-TYP-CONS"
 HEIGHT = 11
 LOCATION = SPACE-V5

$ ***
$ ** **
$ ** Performance Curves **
$ ** **
$ ***

"DUMMY-CHILLER-EIR-FPLR" = CURVE-FIT
 TYPE = BI-QUADRATIC-RATIO&DT
 INPUT-TYPE = COEFFICIENTS
 COEFFICIENTS = (0, 1, 0, 0, 0, 0)

"DUMMY-CHILLER-EIR-FT" = CURVE-FIT
 TYPE = BI-QUADRATIC-T
 INPUT-TYPE = COEFFICIENTS
 COEFFICIENTS = (1, 0, 0, 0, 0, 0)

"DUMMY-CHILLER-CAP-FT" = CURVE-FIT
 TYPE = BI-QUADRATIC-T
 INPUT-TYPE = COEFFICIENTS
 COEFFICIENTS = (1, 0, 0, 0, 0, 0)

"ForcedDraft-Blr-HIR-fPLR2" = CURVE-FIT
 LIBRARY-ENTRY "ForcedDraft-Blr-HIR-fPLR"

"DUMMY-BLR-HIR-FPLR" = CURVE-FIT
 TYPE = QUADRATIC
 INPUT-TYPE = COEFFICIENTS
 COEFFICIENTS = (0, 1, 0)
"Submeter 1 - Exterior Lighting" = ELEC-METER
 TYPE = SUB-METER
 EXTERIOR-POWER = (0.672)
 EXTERIOR-SCH = ("EXT-LIGHTS-SCH")
..
"EM1" = ELEC-METER
 TYPE = UTILITY
 BLDG/SUB-METERS = ("Submeter 1 - Exterior Lighting",
 "Submeter 2 - Elevator")
..
"Submeter 2 - Elevator" = ELEC-METER
 TYPE = SUB-METER
 INTERIOR-POWER = (20)
 INTERIOR-SCH = ("SCHOOL-SECON ELEV")
..
"MASTER-METERS 1" = MASTER-METERS
 MSTR-ELEC-METER = "EM1"
 MSTR-FUEL-METER = "FM1"
..
"HW Pump 1" = PUMP
 MOTOR-CLASS = PREMIUM
 CAP-CTRL = VAR-SPEED-PUMP
"CW Pump" = PUMP
 HEAD = 0
 MOTOR-CLASS = PREMIUM

"CHW Loop Pump" = PUMP
 MOTOR-CLASS = PREMIUM
 CAP-CTRL = VAR-SPEED-PUMP

$ ---
$ Heat Exchangers
$ ---

$ ---
$ Circulation Loops
$ ---

"Chilled Water Loop" = CIRCULATION-LOOP
 TYPE = CHW
 LOOP-DESIGN-DT = 14
 SIZING-OPTION = SECONDARY
 DESIGN-COOL-T = 45
 LOOP-PUMP = "CHW Loop Pump"

"Hot Water Loop" = CIRCULATION-LOOP
 TYPE = HW
 LOOP-DESIGN-DT = 20

"Condenser Water Loop" = CIRCULATION-LOOP
 TYPE = CW
 SIZING-OPTION = PRIMARY
 COOL-SETPT-CTRL = LOAD-RESET
 LOOP-PUMP = "CW Pump"

"DHW LOOP" = CIRCULATION-LOOP
 TYPE = DHW
 PROCESS-FLOW = (0.69)
 PROCESS-SCH = ("DHW-SCH")

$ ---
$ Chillers
$ ---

"Chiller 1" = CHILLER
 TYPE = ELEC-HERM-CENT
 CAPACITY = 0.45
 CAPACITY-FT = "DUMMY-CHILLER-CAP-FT"
 MIN-RATIO = 0.01
 ELEC-INPUT-RATIO = 0.1621
 EIR-FT = "DUMMY-CHILLER-EIR-FT"
 EIR-FPLR = "DUMMY-CHILLER-EIR-FPLR"
CHW-LOOP = "Chilled Water Loop"
CONDENSER-TYPE = WATER-COOLED
CW-LOOP = "Condenser Water Loop"

$ ---
$ Boilers
$ ---

"Steam Boiler 1" = BOILER
 TYPE = STM-BOILER-W/DRAFT
 MIN-RATIO = 0.01
 ELEC-INPUT-RATIO = 0
 HEAT-INPUT-RATIO = 1.25
 HIR-FPLR = "DUMMY-BLR-HIR-FPLR"
 LOCATION = ZONE
 ZONE-NAME = "Z03-199-STO_C"
 HW-LOOP = "Hot Water Loop"
 HW-PUMP = "HW Pump 1"

$ ---
$ Domestic Water Heaters
$ ---

"DHW-1" = DW-HEATER
 TYPE = GAS
 LOCATION = ZONE
 ZONE-NAME = "Z01-191-COR_C"
 DHW-LOOP = "DHW LOOP"

$ ---
$ Heat Rejection
$ ---

"Cooling Tower" = HEAT-REJECTION
 TYPE = OPEN-TWR
 CAPACITY = 0.75
 NUMBER-OF-CELLS = 1
 CW-LOOP = "Condenser Water Loop"

$ ---
$ Tower Free Cooling
$ ---

$ ---
$ Photovoltaic Modules
$ ---
$ Electric Generators

$ Thermal Storage

$ Ground Loop Heat Exchangers

$ Compliance DHW (residential dwelling units)

$ Steam & Chilled Water Meters

$ Steam Meters

$ Chilled Water Meters

$ HVAC Systems / Zones

SET-DEFAULT FOR ZONE
 TYPE = CONDITIONED
 DESIGN-COOL-T = 75
 HW-VALVE-TYPE = TWO-WAY

"AHU-1" = SYSTEM
TYPE = VAVS
HEAT-SOURCE = HOT-WATER
HEATING-SCHEDULE = "HTG_AVAIL-ALL-ANNUAL"
COOLING-SCHEDULE = "CLG_AVAIL-ALL-ANNUAL"
COOL-CONTROL = WARMEST
SUPPLY-FLOW = 23000
MIN-OUTSIDE-AIR = 0.14
OA-CONTROL = DUAL-ENTHALPY
FAN-SCHEDULE = "FAN-SCH-ANNUAL"
FAN-CONTROL = SPEED
SUPPLY-DELTA-T = 3.99
SUPPLY-KW/FLOW = 0.001346
FAN-PLACEMENT = DRAW-THROUGH
RETURN-KW/FLOW = 0.000725
MIN-FAN-RATIO = 0.4
NIGHT-CYCLE-CTRL = CYCLE-ON-ANY
REHEAT-DELTA-T = 60
MIN-FLOW-RATIO = 0.4
HW-VALVE-TYPE = TWO-WAY
HW-LOOP = "Hot Water Loop"
CHW-VALVE-TYPE = TWO-WAY
CHW-LOOP = "Chilled Water Loop"
COOLING-CAPACITY = 1.2e+006
COOL-SH-CAP = 780000
HEATING-CAPACITY = -1e+006

"201-191-COR_C" = ZONE
 TYPE = CONDITIONED
 HEAT-TEMP-SCH = "HTG-COR-ANNUAL"
 COOL-TEMP-SCH = "CLG-COR-ANNUAL"
 SPACE = "201-191-COR"

"202-195-RR_C" = ZONE
 TYPE = CONDITIONED
 HEAT-TEMP-SCH = "HTG-COR-ANNUAL"
 COOL-TEMP-SCH = "CLG-COR-ANNUAL"
 SPACE = "202-195-RR"

"203-199-STO_C" = ZONE
 TYPE = CONDITIONED
 HEAT-TEMP-SCH = "HTG-STO-ANNUAL"
 COOL-TEMP-SCH = "CLG-STO-ANNUAL"
 SPACE = "203-199-STO"

"204-191-COR_C" = ZONE
 TYPE = CONDITIONED
 HEAT-TEMP-SCH = "HTG-COR-ANNUAL"
 COOL-TEMP-SCH = "CLG-COR-ANNUAL"
 SPACE = "204-191-COR"

"205-10A-CLA_C" = ZONE
 TYPE = CONDITIONED
 HEAT-TEMP-SCH = "HTG-CLASS-ANNUAL"
 COOL-TEMP-SCH = "CLG-CLASS-ANNUAL"
 SPACE = "205-10A-CLA"

"206-10B-CLA_C" = ZONE
TYPE = CONDITIONED
HEAT-TEMP-SCH = "HTG-CLASS-ANNUAL"
COOL-TEMP-SCH = "CLG-CLASS-ANNUAL"
SPACE = "Z06-10B-CLA"

"Z07-110-CLAB_C" = ZONE
TYPE = CONDITIONED
HEAT-TEMP-SCH = "HTG-CLASS-ANNUAL"
COOL-TEMP-SCH = "CLG-CLASS-ANNUAL"
SPACE = "Z07-110-CLAB"

"Z08-127-CLAB_C" = ZONE
TYPE = CONDITIONED
HEAT-TEMP-SCH = "HTG-CLASS-ANNUAL"
COOL-TEMP-SCH = "CLG-CLASS-ANNUAL"
SPACE = "Z08-127-CLAB"

"Z09-112-CLAB_C" = ZONE
TYPE = CONDITIONED
HEAT-TEMP-SCH = "HTG-CLASS-ANNUAL"
COOL-TEMP-SCH = "CLG-CLASS-ANNUAL"
SPACE = "Z09-112-CLAB"

"Z10-125-CLAB_C" = ZONE
TYPE = CONDITIONED
HEAT-TEMP-SCH = "HTG-CLASS-ANNUAL"
COOL-TEMP-SCH = "CLG-CLASS-ANNUAL"
SPACE = "Z10-125-CLAB"

"Z11-130-OFC_C" = ZONE
TYPE = CONDITIONED
HEAT-TEMP-SCH = "HTG-OFC-ANNUAL"
COOL-TEMP-SCH = "CLG-OFC-ANNUAL"
SPACE = "Z11-130-OFC"

"Z12-126-OFC_C" = ZONE
TYPE = CONDITIONED
HEAT-TEMP-SCH = "HTG-OFC-ANNUAL"
COOL-TEMP-SCH = "CLG-OFC-ANNUAL"
SPACE = "Z12-126-OFC"

"Z13-120-OFC_C" = ZONE
TYPE = CONDITIONED
HEAT-TEMP-SCH = "HTG-OFC-ANNUAL"
COOL-TEMP-SCH = "CLG-OFC-ANNUAL"
SPACE = "Z13-120-OFC"

"Z15-293-COR_C" = ZONE
TYPE = CONDITIONED
HEAT-TEMP-SCH = "HTG-COR-ANNUAL"
COOL-TEMP-SCH = "CLG-COR-ANNUAL"
SPACE = "Z15-293-COR"

"Z16-295-RR_C" = ZONE
TYPE = CONDITIONED
HEAT-TEMP-SCH = "HTG-COR-ANNUAL"
COOL-TEMP-SCH = "CLG-COR-ANNUAL"
SPACE = "Z16-295-RR"
.. "Z18-209-OFC_C" = ZONE
 TYPE = CONDITIONED
 HEAT-TEMP-SCH = "HTG-OFC-ANNUAL"
 COOL-TEMP-SCH = "CLG-OFC-ANNUAL"
 SPACE = "Z18-209-OFC"
.. "Z19-291-COR_C" = ZONE
 TYPE = CONDITIONED
 HEAT-TEMP-SCH = "HTG-COR-ANNUAL"
 COOL-TEMP-SCH = "CLG-COR-ANNUAL"
 SPACE = "Z19-291-COR"
.. "Z20-206-CLAB_C" = ZONE
 TYPE = CONDITIONED
 HEAT-TEMP-SCH = "HTG-CLASS-ANNUAL"
 COOL-TEMP-SCH = "CLG-CLASS-ANNUAL"
 SPACE = "Z20-206-CLAB"
.. "Z21-212-LEARN_C" = ZONE
 TYPE = CONDITIONED
 HEAT-TEMP-SCH = "HTG-CLASS-ANNUAL"
 COOL-TEMP-SCH = "CLG-CLASS-ANNUAL"
 SPACE = "Z21-212-LEARN"
.. "Z22-208-CLAB_C" = ZONE
 TYPE = CONDITIONED
 HEAT-TEMP-SCH = "HTG-CLASS-ANNUAL"
 COOL-TEMP-SCH = "CLG-CLASS-ANNUAL"
 SPACE = "Z22-208-CLAB"
.. "Z23-212-LEARN_C" = ZONE
 TYPE = CONDITIONED
 HEAT-TEMP-SCH = "HTG-CLASS-ANNUAL"
 COOL-TEMP-SCH = "CLG-CLASS-ANNUAL"
 SPACE = "Z23-212-LEARN"
.. "Z24-210-OFC_C" = ZONE
 TYPE = CONDITIONED
 HEAT-TEMP-SCH = "HTG-OFC-ANNUAL"
 COOL-TEMP-SCH = "CLG-OFC-ANNUAL"
 SPACE = "Z24-210-OFC"
.. "Z25-212-MEDIA_C" = ZONE
 TYPE = CONDITIONED
 HEAT-TEMP-SCH = "HTG-CLASS-ANNUAL"
 COOL-TEMP-SCH = "CLG-CLASS-ANNUAL"
 SPACE = "Z25-212-MEDIA"
.. "Z26-211-FUND_C" = ZONE
 TYPE = CONDITIONED
 HEAT-TEMP-SCH = "HTG-CLASS-ANNUAL"
 COOL-TEMP-SCH = "CLG-CLASS-ANNUAL"
 SPACE = "Z26-211-FUND"
.. "Z27-215-BEDLAB_C" = ZONE
TYPE = CONDITIONED
HEAT-TEMP-SCH = "HTG-CLASS-ANNUAL"
COOL-TEMP-SCH = "CLG-CLASS-ANNUAL"
SPACE = "Z227-215-BEDLAB"

"Z228-217-LOUNGE_C" = ZONE
TYPE = CONDITIONED
HEAT-TEMP-SCH = "HTG-OFC-ANNUAL"
COOL-TEMP-SCH = "CLG-OFC-ANNUAL"
SPACE = "Z228-217-LOUNGE"

"Z29-223-OFC_C" = ZONE
TYPE = CONDITIONED
HEAT-TEMP-SCH = "HTG-OFC-ANNUAL"
COOL-TEMP-SCH = "CLG-OFC-ANNUAL"
SPACE = "Z29-223-OFC"

"AC-1" = SYSTEM
TYPE = PSZ
HEAT-SOURCE = NONE
COOLING-SCHEDULE = "CLG_AVAIL-ALL-ANNUAL"
SUPPLY-FLOW = 800
MIN-OUTSIDE-AIR = 0
FAN-SCHEDULE = "FAN-SCH-ANNUAL"
NIGHT-CYCLE-CTRL = CYCLE-ON-ANY
COOLING-CAPACITY = 23800
COOL-SH-CAP = 20100
CRANKCASE-HEAT = 0
CONTROL-ZONE = "Z14-199-DATA_C"

"Z14-199-DATA_C" = ZONE
TYPE = CONDITIONED
HEAT-TEMP-SCH = "HTG-STO-ANNUAL"
COOL-TEMP-SCH = "CLG-STO-ANNUAL"
SPACE = "Z14-199-DATA"

"AC-2" = SYSTEM
TYPE = PSZ
HEAT-SOURCE = NONE
COOLING-SCHEDULE = "CLG_AVAIL-ALL-ANNUAL"
SUPPLY-FLOW = 800
MIN-OUTSIDE-AIR = 0
FAN-SCHEDULE = "FAN-SCH-ANNUAL"
NIGHT-CYCLE-CTRL = CYCLE-ON-ANY
COOLING-CAPACITY = 23800
COOL-SH-CAP = 20100
CRANKCASE-HEAT = 0
CONTROL-ZONE = "Z17-299-DATA_C"

"Z17-299-DATA_C" = ZONE
TYPE = CONDITIONED
HEAT-TEMP-SCH = "HTG-STO-ANNUAL"
COOL-TEMP-SCH = "CLG-STO-ANNUAL"
SPACE = "Z17-299-DATA"
$ **
$ ** **
$ ** Metering & Misc HVAC **
$ ** **
$ **

$ --
$ Equipment Controls
$ --

$ --
$ Load Management
$ --

$ **
$ ** **
$ ** Utility Rates **
$ ** **
$ **

$ --
$ Ratchets
$ --

$ --
$ Block Charges
$ --

"ON-PEAK" = BLOCK-CHAR
 BLOCK-SCH = "ELE-SCH-FLAG"
 SCH-FLAG = 1.1
 BLOCKS-ARE = INCREMENTAL
 BLOCKS-1 = (1)
 COSTS-1 = (0.105771)
 BLOCK2-TYPE = DEMAND
 BLOCKS-2 = (1)
 COSTS-2 = (9.63)

"OFF-PEAK" = BLOCK-CHAR
 BLOCK-SCH = "ELE-SCH-FLAG"
 SCH-FLAG = 1.2
 BLOCKS-ARE = INCREMENTAL
 BLOCKS-1 = (1)
 COSTS-1 = (0.0840312)
 BLOCK2-TYPE = DEMAND
 BLOCKS-2 = (1)
 COSTS-2 = (0)

"GAS-BLK" = BLOCK-CHAR
 BLOCKS-ARE = INCREMENTAL
 BLOCKS-1 = (3, 277, 4720, 1)
COSTS-1 = (0, 1.11991, 1.00711, 0.90053)
.

$ ---
$ Utility Rates
$ ---

"RGEE-SC08" = UTILITY-RATE
 TYPE = ELECTRICITY
 ELEC-METERS = ("EM1")
 MONTH-CHGS = (435.4)
 BLOCK-CHARGES = ("ON-PEAK", "OFF-PEAK")
...

"RGEG-SC03" = UTILITY-RATE
 TYPE = NATURAL-GAS
 FUEL-METERS = ("FM1")
 MONTH-CHGS = (19.35)
 BLOCK-CHARGES = ("GAS-BLK")
...

$ ***
$ ** **
$ ** Output Reporting **
$ ** **
$ ***

$ ---
$ Loads Non-Hourly Reporting
$ ---

LOADS-REPORT
 VERIFICATION = (LV-B, LV-D)
 SUMMARY = (LS-C, LS-D, LS-F, LS-I)
...

$ ---
$ Systems Non-Hourly Reporting
$ ---

SYSTEMS-REPORT
 VERIFICATION = (SV-A)
 SUMMARY = (ALL-SUMMARY)
...

$ ---
$ Plant Non-Hourly Reporting
$ ---

PLANT-REPORT
...

$ ---
$ Economics Non-Hourly Reporting
$ ---
ECONOMICS-REPORT
...
$ ---
$ Hourly Reporting
$ ---

$ ---
$ THE END
$ ---

END ..
COMPUTE ..
STOP ..
Input for LEED Baseline Model
$ ---
$ Abort, Diagnostics
$ ---

$ ---
$ Global Parameters
$ ---

$ ---
$ Title, Run Periods, Design Days, Holidays
$ ---

TITLE
LINE-1 = *Monroe Community College*
LINE-2 = *School of Nursing*
LINE-3 = *NYSERDA NCP7190*
LINE-4 = *LEED Baseline Final for Submission*
LINE-5 = *SAIC/Energy Systems Group*
..

"Entire Year" = RUN-PERIOD-PD
BEGIN-MONTH = 1
BEGIN-DAY = 1
BEGIN-YEAR = 2007
END-MONTH = 12
END-DAY = 31
END-YEAR = 2007
..

"LMC Holidays" = HOLIDAYS
TYPE = ALTERNATE
MONTHS = (1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 4, 5, 7, 9, 10,
 10, 11, 11, 11, 11, 12)
DAYS = (1, 15, 25, 26, 27, 28, 1, 2, 3, 5, 6, 7, 8, 9, 28, 4,
 3, 8, 9, 21, 22, 23, 24, 25)
..

$ ---
$ Compliance Data
$ ---

$ ---
$ Site and Building Data
$ ---
"SITE-PARAMETERS 1" = SITE-PARAMETERS
 TIME-ZONE = 5
 ..

"School of Nursing - Monroe Commu" = BUILD-PARAMETERS
 AZIMUTH = 95
 ..

$ ---
$ Materials / Layers / Constructions
$ ---

"UWMat R10" = MATERIAL
 TYPE = RESISTANCE
 RESISTANCE = 10
 ..

"UFMat R100" = MATERIAL
 TYPE = RESISTANCE
 RESISTANCE = 100
 ..

"MAT-FICT-1" = MATERIAL
 TYPE = RESISTANCE
 RESISTANCE = 21.09
 ..

"W-BRICK-LAYER" = LAYERS
 MATERIAL = ("Steel Siding (AS01)", "Air Lay <4in Vert (AL21)",
 "Polystyrene 1in (IN33)", "Polyurethane 1in (IN43)",
 "GypBd 5/8in (GP02)")
 ..

"W-SPANDREL-LAYER" = LAYERS
 MATERIAL = ("1/4in Spandrel Glass", "Air Lay <4in Vert (AL21)",
 "Polystyrene 1in (IN33)", "Polyurethane 1in (IN43)",
 "GypBd 5/8in (GP02)")
 ..

"UF-TYP-LAYER" = LAYERS
 MATERIAL = ("MAT-FICT-1", "Conc LW 80lb 8in (CC26)",
 "Polystyrene 1/2in (IN31)", "Soil 12in")
 ..

"R-LAYER-TYP" = LAYERS
 MATERIAL = ("Rubber Tile (RT01)", "Polystyrene 1/2in (IN31)",
 "Polystyrene 3in (IN36)", "Plywd 3/4in (PW05)",
 "Steel Siding (AS01)", "Air Lay >4in Horiz (AL33)",
 "AcousTile 3/4in (AC03)")
 ..

"IW-TYP-LAYER" = LAYERS
 MATERIAL = ("GypBd 5/8in (GP02)", "Air Lay <4in Vert (AL21)",
 "GypBd 5/8in (GP02)")
 ..

"W-BRICK-CONS" = CONSTRUCTION
 TYPE = LAYERS
 LAYERS = "W-BRICK-LAYER"
 ..

"W-SPANDREL-CONS" = CONSTRUCTION
TYPE = LAYERS
LAYERS = "W-SPANDREL-LAYER"

"UF-TYP-CONS" = CONSTRUCTION
 TYPE = LAYERS
 LAYERS = "UF-TYP-LAYER"

"R-TYP-CONS" = CONSTRUCTION
 TYPE = LAYERS
 LAYERS = "R-LAYER-TYP"

"IW-TYP-CONS" = CONSTRUCTION
 TYPE = LAYERS
 LAYERS = "IW-TYP-LAYER"

$ ---
$ Glass Type Codes
$ ---

$ ---
$ Glass Types
$ ---

"TYP-GLASS-1" = GLASS-TYPE
 TYPE = GLASS-TYPE-CODE
 GLASS-TYPE-CODE = "2470"

"TYP-GLASS-N" = GLASS-TYPE
 TYPE = GLASS-TYPE-CODE
 GLASS-TYPE-CODE = "2203"

$ ---
$ Window Layers
$ ---

$ ---
$ Lamps / Luminaries / Lighting Systems
$ ---

$ ---
$ Day Schedules
$ ---

"OCC-OFC-WD-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
VALUES = (0, &D, &D, &D, &D, &D, 0.15, 0.5, 0.9, 1, &D, 0.8, &D, 1, &D, 0.5, 0.1, 0.05, &D, &D, 0)

"OCC-OFC-SAT-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0, &D, &D, &D, &D, &D, &D, &D, 0.05, &D, &D, &D, 0)

"OCC-OFC-SUN-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0)

"OCC-CLASS-WD-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0, &D, &D, &D, &D, &D, &D, 0.15, 0.5, 1, 0.75, 0.5, 0.5, 1, 0.75, 0.25, &D, 0.1, 0.4, &D, 0.15, 0.05, 0)

"OCC-CLASS-SAT-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0, &D, &D, &D, &D, &D, &D, &D, 0.05, &D, &D, &D, 0)

"OCC-CLASS-SUN-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0)

"OCC-COR-WD-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0, &D, &D, &D, &D, 0.05, 0.3, 0.5, 1, &D, &D, &D, &D, &D, 0.5, 0.3, &D, 0.1, &D, 0)

"OCC-COR-SAT-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0, &D, &D, &D, &D, &D, &D, &D, 0.02, &D, &D, &D, 0)

"OCC-COR-SUN-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0)

"OCC-MECH-WD-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0, &D, &D, &D, &D, &D, 1, 0, &D, 0)

"OCC-MECH-WEH-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0)

"OCC-STO-WD-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0, &D, &D, &D, &D, 1, 0, &D, &D, 1, 0)

"OCC-STO-WEH-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0)

"LITE-OFC-WD-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0, &D, &D, &D, &D, &D, 0.05, 0.5, 0.9, 1, &D, 0.9,
 0.9, 1, &D, &D, 0.7, 0.1, 0.05, &D, &D, &D, 0)

"LITE-OFC-SAT-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0, &D, &D, &D, &D, &D, &D, &D, 0.1, &D, &D, &D, 0)

"LITE-OFC-SUN-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0)

"LITE-CLASS-WD-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0, &D, &D, &D, &D, &D, &D, 0.3, 0.6, 1, &D, 0.7, 0.7,
 1, &D, 0.7, 0.5, 0.3, &D, &D, &D, 0.15, 0)

"LITE-CLASS-SAT-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0, &D, &D, &D, &D, &D, &D, &D, 0.05, &D, &D, &D, 0)

"LITE-CLASS-SUN-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0)

"LITE-COR-WD-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.02, &D, &D,
 &D, &D, &D, &D, &D, &D, &D, &D, &D, &D, 0.02)

"LITE-COR-SAT-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.02, &D, &D, &D, &D, &D, 1, &D, &D, &D, &D, &D,
 &D, &D, &D, &D, &D, &D, &D, &D, &D, &D, &D, 0.02)

"LITE-COR-SUN-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.02, &D, &D, &D, &D, &D, &D, &D, &D, &D, &D,
 &D, &D, 1, &D, &D, &D, &D, 0.02)

"LITE-MECH-WD-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.02, &D, &D, &D, &D, &D, &D, &D, &D, &D, &D,
 &D, &D, &D, &D, 1, 0, &D, 0)

"LITE-MECH-WEH-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.02)

"LITE-STO-WD-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.02, &D, &D, &D, &D, &D, &D, &D, &D, &D, &D,
 &D, &D, 1, 0, &D, 0)

"LITE-STO-WEH-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.02)

..
"EQP-OFC-WD-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.05, &D, &D, &D, 0.5, 1, 1)
...
"EQP-OFC-SAT-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.05, &D, &D, &D, &D, &D, &D, 0.05)
...
"EQP-OFC-SUN-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.05, &D, &D, &D, 1, &D, 0.05)
...
"EQP-CLASS-WD-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.05, &D, &D, 0.5, 1, 0.5)
...
"EQP-CLASS-SAT-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.05, &D, &D, &D, 1)
...
"EQP-CLASS-SUN-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.05, &D, &D, &D, &D, &D, 0.05)
...
"EQP-COR-WD-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.05, &D, &D, &D, &D, 1, &D, 0.05)
...
"EQP-COR-SAT-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.05, &D, &D, &D, 1)
...
"EQP-COR-SUN-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.05)
...
"EQP-MECH-WD-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.05, &D, &D, &D, &D, &D, 0.05)
...
"EQP-MECH-WEH-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.05)
...
"EQP-STO-WD-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.05, &D, &D, &D, 0.05)
...
"EQP-STO-WEH-SCH" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.05)
...
"HTG-OFC-WD-SCH" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE
VALUES = (64, &D, &D, &D, &D, 70, &D, &D, &D, &D, &D, &D, &D, &D,
 &D, &D, &D, &D, &D, &D, &D, &D, &D, 64)

"HTG-OF-C-SAT-SCH" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE
VALUES = (64, &D, &D, &D, &D, 70, &D, &D, &D, &D, &D, &D, &D, &D,
 &D, &D, &D, &D, &D, &D, &D, &D, &D, 64)

"HTG-OF-C-SUN-SCH" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE
VALUES = (64, &D, &D,
 &D, &D, &D, &D, &D, &D, &D, &D, &D, 64)

"HTG-CLASS-WD-SCH" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE
VALUES = (64, &D, &D, &D, &D, 70, &D, &D, &D, &D, &D, &D, &D, &D,
 &D, &D, &D, &D, &D, &D, &D, &D, &D, 64)

"HTG-CLASS-SAT-SCH" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE
VALUES = (64, &D, &D, &D, &D, 70, &D, &D, &D, &D, &D, &D, &D, &D,
 &D, &D, &D, &D, &D, &D, &D, &D, &D, 64)

"HTG-CLASS-SUN-SCH" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE
VALUES = (64, &D, &D,
 &D, &D, &D, &D, &D, &D, &D, &D, &D, 64)

"HTG-COR-WD-SCH" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE
VALUES = (64, &D, &D, &D, &D, 70, &D, &D, &D, &D, &D, &D, &D, &D,
 &D, &D, &D, &D, &D, &D, &D, &D, &D, 64)

"HTG-COR-SAT-SCH" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE
VALUES = (64, &D, &D, &D, &D, 70, &D, &D, &D, &D, &D, &D, &D, &D,
 &D, &D, &D, &D, &D, &D, &D, &D, &D, 64)

"HTG-COR-SUN-SCH" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE
VALUES = (64, &D, &D,
 &D, &D, &D, &D, &D, &D, &D, &D, &D, 64)

"HTG-MECH-WD-SCH" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE
VALUES = (64, &D, &D, &D, &D, 70, &D, &D, &D, &D, &D, &D, &D, &D,
 &D, &D, &D, &D, &D, &D, &D, &D, &D, 64)

"HTG-MECH-WEH-SCH" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE
VALUES = (64, &D, &D, &D, &D, 70, &D, &D, &D, &D, &D, &D, &D, &D,
 &D, &D, &D, &D, &D, &D, &D, &D, &D, 64)

"HTG-STO-WD-SCH" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE
VALUES = (64, &D, &D, &D, &D, 70, &D, &D, &D, &D, &D, &D, &D, &D,
 &D, &D, &D, &D, &D, &D, &D, &D, &D, 64)

"HTG-STO-WEH-SCH" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE
VALUES = (64, &D, &D, &D, &D, 70, &D, &D, &D, &D, &D, &D, &D, &D,
 &D, &D, &D, &D, &D, &D, &D, &D, &D, 64)
TYPE = TEMPERATURE
VALUES = (64)

"CLG-OF-WD-SCH" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE

"CLG-OF-SAT-SCH" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE

"CLG-OF-SUN-SCH" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE

"CLG-CLASS-WD-SCH" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE

"CLG-CLASS-SAT-SCH" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE

"CLG-CLASS-SUN-SCH" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE

"CLG-COR-WD-SCH" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE

"CLG-COR-SAT-SCH" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE

"CLG-COR-SUN-SCH" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE

"CLG-MECH-WD-SCH" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE
VALUES = (82)

"CLG-MECH-SAT-SCH" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE
VALUES = (82)

"CLG-MECH-SUN-SCH" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE
VALUES = (82)

"CLG-STO-WD-SCH" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE
VALUES = (82)

"CLG-STO-WEH-SCH" = DAY-SCHEDULE-PD
TYPE = TEMPERATURE
VALUES = (82)

"FAN-ALL-ALL-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (1)

"INF-ALL-WD-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (1)

"INF-ALL-SAT-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (1)

"INF-ALL-SUN-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (1)

"HTG_AVAIL-ALL-ALL-SCH" = DAY-SCHEDULE-PD
TYPE = ON/OFF
VALUES = (1)

"CLG_AVAIL-ALL-ALL-SCH" = DAY-SCHEDULE-PD
TYPE = ON/OFF
VALUES = (1)

"OAD-OFC-M_TH-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0.1, &D, &D, &D, &D, 0.3, 0.8, 1, &D, 0.5, &D, &D, &D, 0.1)

"OAD-OFC-FRI-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0.1, &D, &D, &D, &D, 0.3, 0.8, 1, &D, 0.1)

"OAD-OFC-SAT-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0.1, &D, &D, &D, &D, 0.2, 0.7, 0.9, &D, &D, &D, &D, &D, &D, 0.3, &D, &D, &D, 0.1, &D, &D, &D, 0.1)

"OAD-OFC-SUN-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0.1)

"OAD-CLASS-M_TH-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0.1, &D, &D, &D, &D, 0.3, 0.8, 1, &D, 0.1)

"OAD-CLASS-FRI-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0.1)
VALUES = (0.1, &D, &D, &D, &D, 0.3, 0.8, 1, &D, &D, &D, &D, &D, &D, &D, 0.5, &D, &D, &D, &D, &D, 0.1)

"OAD-CLASS-SAT-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0.1, &D, &D, &D, &D, 0.2, 0.7, 0.9, &D, &D, &D, &D, &D, &D, &D, 0.1)

"OAD-CLASS-SUN-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0.1, &D, &D, &D, &D, 0.2, 0.7, 0.9, &D, &D, &D, &D, &D, &D, &D, 0.1)

"OAD-COR-M_TH-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0.1, &D, &D, &D, &D, 0.3, 0.8, 1, &D, &D, &D, &D, &D, &D, &D, 0.1)

"OAD-COR-FRI-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0.1, &D, &D, &D, &D, 0.3, 0.8, 1, &D, &D, &D, &D, &D, &D, &D, 0.1)

"OAD-COR-SAT-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0.1, &D, &D, &D, &D, 0.2, 0.7, 0.9, &D, &D, &D, &D, &D, &D, &D, 0.1)

"OAD-COR-SUN-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0.1, &D, &D, &D, &D, 0.2, 0.7, 0.9, &D, &D, &D, &D, &D, &D, &D, 0.1)

"OAD-MECH-M_TH-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0.1, &D, &D, &D, &D, 0.7, &D, &D, &D, &D, &D, &D, &D, &D, &D, 0.1)

"OAD-MECH-FRI-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0.1, &D, &D, &D, &D, 0.7, &D, &D, &D, &D, &D, &D, &D, &D, &D, 0.1)

"OAD-MECH-SAT-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0.1, &D, &D, &D, &D, 0.2, &D, 0.1)

"OAD-MECH-SUN-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0.1)

"OAD-MECH-M_TH-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0.1)

"OAD-MECH-FRI-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0)

"OAD-STO-M_TH-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0)

"OAD-STO-FRI-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0)

"OAD-STO-SAT-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0)

"OAD-STO-SUN-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0)

"LITE-OFC-WD-OCCSEN-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0, &D, &D, &D, &D, &D, 0.05, 0.3, 0.6, 0.7, &D, 0.5, &D, 0.7, &D, &D, 0.4, 0.1, 0.05, 0)

"LITE-CLASS-WD-OCCSEN-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0, &D, &D, &D, &D, &D, 0.3, 0.5, 0.9, &D, 0.5, &D, 0.9, &D, &D, 0.5, &D, 0.1, 0.05, 0)

"FAN-WD-TYP" = DAY-SCHEDULE-PD
TYPE = ON/OFF
VALUES = (0, &D, &D, &D, &D, 1, 1, &D, 0)

"FAN-SAT-TYP" = DAY-SCHEDULE-PD
TYPE = ON/OFF
VALUES = (0, &D, &D, &D, &D, 1, &D, 0)

"FAN-SUN-TYP" = DAY-SCHEDULE-PD
TYPE = ON/OFF
VALUES = (0, &D, 0)

"OA-ALL-WD-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0, &D, &D, &D, &D, 0.15, 0.25, 0.75, 1, &D, 0.75, &D, 1, &D, 0.4, 0.5, &D, &D, &D, 0)

"OA-ALL-SAT-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0, &D, 0.05, &D, &D, &D, &D, 0)

"OA-ALL-SUN-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0)

"DHW-SAT-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0, &D, &D, &D, 0.05, &D, &D, &D, &D, &D, 0)

"DHW-SUN-SCH" = DAY-SCHEDULE-PD
TYPE = FRACTION
VALUES = (0)
<table>
<thead>
<tr>
<th>Variable</th>
<th>Type</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>"DHW-WD-SCH"</td>
<td>FRACTION</td>
<td>(0, &D, &D, &D, &D, &D, &D, &D, 0.15, 0.5, 1, 0.75, 0.5, 0.5, 1, 0.75, 0.25, &D, 0.1, 0.4, &D, 0.15, 0.05, 0)</td>
</tr>
<tr>
<td>"MINFLOW-OFC-WD-SCH"</td>
<td>FRACTION</td>
<td>(0.4, &D, &D, &D, &D, &D, 0.1, 0.2, 0.3, 0.4, &D, &D, 0.3, 0.4, &D, &D, &D, &D, &D, 0.1, 0.4, &D, &D, &D, &D, &D, 0.1, 0.4)</td>
</tr>
<tr>
<td>"MINFLOW-OFC-SAT-SCH"</td>
<td>FRACTION</td>
<td>(0.4, &D, &D, &D, &D, &D, 0.1, 0.4, &D, 0.4)</td>
</tr>
<tr>
<td>"MINFLOW-OFC-SUN-SCH"</td>
<td>FRACTION</td>
<td>(0.4)</td>
</tr>
<tr>
<td>"ELE-WD-FLAG"</td>
<td>FLAG</td>
<td>(1.2, &D, &D, &D, &D, &D, &D, &D, 1.1, &D, 1.2)</td>
</tr>
<tr>
<td>"ELE-WE-FLAG"</td>
<td>FLAG</td>
<td>(1.2)</td>
</tr>
<tr>
<td>"HTG_AVAIL-NOT-ALL-SCH"</td>
<td>ON/OFF</td>
<td>(0)</td>
</tr>
<tr>
<td>"HTG_AVAIL-TEMP-SCH"</td>
<td>TEMPERATURE</td>
<td>(65)</td>
</tr>
<tr>
<td>"EXT-LITE-WINTER"</td>
<td>FRACTION</td>
<td>(1, &D, &D, &D, &D, &D, &D, &D, 0, &D, 1)</td>
</tr>
<tr>
<td>"EXT-LITE-SWING"</td>
<td>FRACTION</td>
<td>(1, &D, &D, &D, &D, &D, &D, 0, &D, 1)</td>
</tr>
<tr>
<td>"EXT-LITE-SUMMER"</td>
<td>FRACTION</td>
<td>(1, &D, &D, &D, &D, &D, 0, &D, 1)</td>
</tr>
<tr>
<td>"HTG-OFC-WD-SCH-VAVOCC"</td>
<td>TEMPERATURE</td>
<td>(64, &D, &D, &D, &D, 70, &D, &D, &D, &D, &D, &D, 67, &D, 70, &D, &D, 67, &D, 70, &D, 64)</td>
</tr>
<tr>
<td>"HTG-OFC-SAT-SCH-VAVOCC"</td>
<td>DAY-SCHEDULE-PD</td>
<td></td>
</tr>
<tr>
<td>"HTG-OFC-SUN-SCH-VAVOCC"</td>
<td>DAY-SCHEDULE-PD</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Values</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------------------</td>
<td></td>
</tr>
<tr>
<td>HTG-OFC-SUN-SCH-VAVOCC = DAY-SCHEDULE-PD</td>
<td>(64, &D, &D, &D, &D, 70, &D, &D, &D, &D, 67, &D, 70, &D, &D, &D, &D, &D, 64)</td>
<td></td>
</tr>
<tr>
<td>HTG-CLASS-WD-SCH-VAVOCC = DAY-SCHEDULE-PD</td>
<td>(64, &D, &D, &D, 70, &D, 64, &D, 70, &D, &D, &D, &D, &D, &D, &D, 64)</td>
<td></td>
</tr>
<tr>
<td>HTG-CLASS-SAT-SCH-VAVOCC = DAY-SCHEDULE-PD</td>
<td>(64, &D, &D, 70, &D, &D, &D, 64, &D, &D, 64, &D, &D, &D, &D, &D, &D, 70, &D, &D, &D, 64)</td>
<td></td>
</tr>
<tr>
<td>HTG-CLASS-SUN-SCH-VAVOCC = DAY-SCHEDULE-PD</td>
<td>(64, &D, &D, &D, &D, 70, &D, &D, &D, &D, &D, 64, &D, &D, &D, &D, &D, &D, &D, 64)</td>
<td></td>
</tr>
<tr>
<td>CLG-OFC-WD-SCH-VAVOCC = DAY-SCHEDULE-PD</td>
<td>(82, &D, &D, &D, 75, &D, &D, &D, &D, 78.5, &D, 75, &D, &D, &D, 82, &D, 82)</td>
<td></td>
</tr>
<tr>
<td>CLG-OFC-SAT-SCH-VAVOCC = DAY-SCHEDULE-PD</td>
<td>(82, &D, &D, &D, 75, &D, &D, &D, &D, 82, &D, &D, 78.5, &D, 82)</td>
<td></td>
</tr>
<tr>
<td>CLG-OFC-SUN-SCH-VAVOCC = DAY-SCHEDULE-PD</td>
<td>(82, &D, &D, &D, 75, &D, &D, &D, 82, &D, 82)</td>
<td></td>
</tr>
<tr>
<td>CLG-CLASS-WD-SCH-VAVOCC = DAY-SCHEDULE-PD</td>
<td>(82, &D, &D, &D, 75, &D, &D, 82, &D, 82)</td>
<td></td>
</tr>
<tr>
<td>CLG-CLASS-SAT-SCH-VAVOCC = DAY-SCHEDULE-PD</td>
<td>(82, &D, &D, &D, 75, &D, 82)</td>
<td></td>
</tr>
<tr>
<td>CLG-CLASS-SUN-SCH-VAVOCC = DAY-SCHEDULE-PD</td>
<td>(82, &D, &D, &D, &D, &D, 82)</td>
<td></td>
</tr>
<tr>
<td>CLG-OFC-WD-SCH-VAVMIN = DAY-SCHEDULE-PD</td>
<td>(0.4, &D, &D, 0.4, &D, 0.2, &D, &D, 0.2, &D, &D, 0.2, &D, &D, &D, &D, &D, 82)</td>
<td></td>
</tr>
</tbody>
</table>
"HTG-OFC-SAT-SCH-VAVMIN" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.4, &D, &D, &D, 0.4, &D, 0.4, &D, 0.4)

"HTG-OFC-SUN-SCH-VAVMIN" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.4, &D, &D, &D, 0.4, &D, &D, &D, &D, &D, &D, 0.2, &D,
 &D, &D, &D, &D, &D, &D, &D, &D, &D, &D, &D, &D, &D, &D, 0.4)

"HTG-CLASS-WD-SCH-VAVMIN" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.4, &D, &D, &D, 0.4, &D, &D, &D, &D, &D, &D, &D, &D, &D, 0.4)

"HTG-CLASS-SAT-SCH-VAVMIN" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.4, &D, &D, &D, &D, &D, 0.4, &D, &D, &D, &D, &D, &D, &D, 0.4)

"HTG-CLASS-SUN-SCH-VAVMIN" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.4, &D, 0.4)

"CLG-OFC-WD-SCH-VAVMIN" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.4, &D, &D, &D, &D, 0.4, &D, &D, &D, &D, &D, &D, 0.4, &D, 0.4)

"CLG-OFC-SAT-SCH-VAVMIN" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.4, &D, &D, &D, &D, &D, 0.4, &D, &D, &D, &D, &D, &D, 0.4, &D, 0.4)

"CLG-OFC-SUN-SCH-VAVMIN" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.4, &D, 0.4)

"CLG-CLASS-WD-SCH-VAVMIN" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.4, &D, &D, &D, 0.4, &D, 0.4, &D, &D, &D, &D, &D, &D, &D, &D, &D, 0.4)

"CLG-CLASS-SAT-SCH-VAVMIN" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.4, &D, &D, &D, &D, &D, 0.4, &D, &D, &D, &D, &D, &D, 0.4, &D, 0.4)

"CLG-CLASS-SUN-SCH-VAVMIN" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.4, &D, 0.4)
"HTG-OFC-WD-SCH-VAVOCC2" = DAY-SCHEDULE-PD
 TYPE = TEMPERATURE
 VALUES = (64, &D, &D, &D, &D, 70, &D, &D, &D, &D, 67, 64, 67, &D, &D, &D, &D, &D, &D, 70, &D, 67, 64)

"HTG-OFC-SAT-SCH-VAVOCC2" = DAY-SCHEDULE-PD
 TYPE = TEMPERATURE
 VALUES = (64, &D, &D, &D, &D, 70, &D, &D, &D, &D, 67, &D, 70, &D, &D, &D, 67, &D, 64)

"HTG-OFC-SUN-SCH-VAVOCC2" = DAY-SCHEDULE-PD
 TYPE = TEMPERATURE
 VALUES = (64, &D, 64)

"HTG-CLASS-WD-SCH-VAVOCC2" = DAY-SCHEDULE-PD
 TYPE = TEMPERATURE
 VALUES = (64, &D, &D, &D, &D, 70, &D, &D, &D, &D, &D, 64, &D, 70, &D, &D, &D, 64, &D, 70, &D, 64)

"HTG-CLASS-SAT-SCH-VAVOCC2" = DAY-SCHEDULE-PD
 TYPE = TEMPERATURE
 VALUES = (64, &D, &D, &D, &D, 70, &D, &D, &D, &D, &D, 64, &D, 70, &D, &D, &D, 64, &D, 70, &D, 64)

"HTG-CLASS-SUN-SCH-VAVOCC2" = DAY-SCHEDULE-PD
 TYPE = TEMPERATURE
 VALUES = (64, &D, 64)

"CLG-OFC-WD-SCH-VAVOCC2" = DAY-SCHEDULE-PD
 TYPE = TEMPERATURE
 VALUES = (82, &D, &D, &D, &D, 75, &D, &D, &D, &D, &D, 78.5, &D, &D, &D, &D, &D, &D, &D, 82)

"CLG-OFC-SAT-SCH-VAVOCC2" = DAY-SCHEDULE-PD
 TYPE = TEMPERATURE
 VALUES = (82, &D, &D, &D, &D, 75, &D, &D, &D, &D, &D, 78.5, &D, 82)

"CLG-OFC-SUN-SCH-VAVOCC2" = DAY-SCHEDULE-PD
 TYPE = TEMPERATURE
 VALUES = (82, &D, 82)

"CLG-CLASS-WD-SCH-VAVOCC2" = DAY-SCHEDULE-PD
 TYPE = TEMPERATURE
 VALUES = (82, &D, &D, &D, &D, 75, &D, &D, &D, &D, &D, 82, &D, 75, &D, &D, &D, 82, &D, 75, &D, 82)

"CLG-CLASS-SAT-SCH-VAVOCC2" = DAY-SCHEDULE-PD
 TYPE = TEMPERATURE
 VALUES = (82, &D, 82)

"CLG-CLASS-SUN-SCH-VAVOCC2" = DAY-SCHEDULE-PD
 TYPE = TEMPERATURE
"CLG-CLASS-SUN-SCH-VAVMIN2" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (0.4, &D, 0.4)

"ALL-ON-DAY" = DAY-SCHEDULE-PD
 TYPE = FRACTION
 VALUES = (1)

$ ---
$ Week Schedules
$ ---

"OCC-OFC-TYP-WEEK" = WEEK-SCHEDULE-PD
 TYPE = FRACTION

"OCC-OFC-VAC-WEEK" = WEEK-SCHEDULE-PD
 TYPE = FRACTION
 DAY-SCHEDULES = ("OCC-OFC-SUN-SCH")

"OCC-CLASS-TYP-WEEK" = WEEK-SCHEDULE-PD
 TYPE = FRACTION

"OCC-CLASS-VAC-WEEK" = WEEK-SCHEDULE-PD
 TYPE = FRACTION
 DAY-SCHEDULES = ("OCC-CLASS-SUN-SCH")

"OCC-COR-TYP-WEEK" = WEEK-SCHEDULE-PD
 TYPE = FRACTION

"OCC-COR-VAC-WEEK" = WEEK-SCHEDULE-PD
 TYPE = FRACTION
 DAY-SCHEDULES = ("OCC-COR-SUN-SCH")

"OCC-MECH-TYP-WEEK" = WEEK-SCHEDULE-PD
 TYPE = FRACTION

"OCC-MECH-VAC-WEEK" = WEEK-SCHEDULE-PD
 TYPE = FRACTION
 DAY-SCHEDULES = ("OCC-MECH-WEH-SCH")

"OCC-STO-TYP-WEEK" = WEEK-SCHEDULE-PD
 TYPE = FRACTION

"OCC-STO-VAC-WEEK" = WEEK-SCHEDULE-PD
 TYPE = FRACTION
 DAY-SCHEDULES = ("OCC-STO-WEH-SCH")
"LITE-OFC-TYP-WEEK" = WEEK-SCHEDULE-PD
TYPE = FRACTION

"LITE-OFC-VAC-WEEK" = WEEK-SCHEDULE-PD
TYPE = FRACTION
DAY-SCHEDULES = ("LITE-OFC-SUN-SCH")

"LITE-CLASS-TYP-WEEK" = WEEK-SCHEDULE-PD
TYPE = FRACTION
DAY-SCHEDULES = ("LITE-CLASS-WD-SCH", &D, &D, &D, &D, "LITE-CLASS-SAT-SCH", "LITE-CLASS-SUN-SCH")

"LITE-CLASS-VAC-WEEK" = WEEK-SCHEDULE-PD
TYPE = FRACTION
DAY-SCHEDULES = ("LITE-CLASS-SUN-SCH")

"LITE-COR-TYP-WEEK" = WEEK-SCHEDULE-PD
TYPE = FRACTION
DAY-SCHEDULES = ("LITE-COR-WD-SCH", &D, &D, &D, &D, "LITE-COR-SAT-SCH", "LITE-COR-SUN-SCH")

"LITE-COR-VAC-WEEK" = WEEK-SCHEDULE-PD
TYPE = FRACTION
DAY-SCHEDULES = ("LITE-COR-SUN-SCH")

"LITE-MECH-TYP-WEEK" = WEEK-SCHEDULE-PD
TYPE = FRACTION
DAY-SCHEDULES = ("LITE-MECH-WD-SCH", &D, &D, &D, &D, "LITE-MECH-WEH-SCH")

"LITE-MECH-VAC-WEEK" = WEEK-SCHEDULE-PD
TYPE = FRACTION
DAY-SCHEDULES = ("LITE-MECH-WEH-SCH")

"LITE-STO-TYP-WEEK" = WEEK-SCHEDULE-PD
TYPE = FRACTION
DAY-SCHEDULES = ("LITE-STO-WD-SCH", &D, &D, &D, &D, "LITE-STO-WEH-SCH")

"LITE-STO-VAC-WEEK" = WEEK-SCHEDULE-PD
TYPE = FRACTION
DAY-SCHEDULES = ("LITE-STO-WEH-SCH")

"EQP-OFC-TYP-WEEK" = WEEK-SCHEDULE-PD
TYPE = FRACTION

"EQP-OFC-VAC-WEEK" = WEEK-SCHEDULE-PD
TYPE = FRACTION
DAY-SCHEDULES = ("EQP-OFC-SUN-SCH")

"EQP-CLASS-TYP-WEEK" = WEEK-SCHEDULE-PD
TYPE = FRACTION
DAY-SCHEDULES = ("EQP-CLASS-WD-SCH", &D, &D, &D, &D, "EQP-CLASS-SAT-SCH", "EQP-CLASS-SUN-SCH")
"EQP-CLASS-VAC-WEEK" = WEEK-SCHEDULE-PD
 TYPE = FRACTION
 DAY-SCHEDULES = ("EQP-CLASS-SUN-SCH")

"EQP-COR-TYP-WEEK" = WEEK-SCHEDULE-PD
 TYPE = FRACTION
 DAY-SCHEDULES = ("EQP-COR-WD-SCH", &D, &D, &D, &D, "EQP-COR-SAT-SCH", "EQP-COR-SUN-SCH")

"EQP-COR-VAC-WEEK" = WEEK-SCHEDULE-PD
 TYPE = FRACTION
 DAY-SCHEDULES = ("EQP-COR-SUN-SCH")

"EQP-MECH-TYP-WEEK" = WEEK-SCHEDULE-PD
 TYPE = FRACTION
 DAY-SCHEDULES = ("EQP-MECH-WD-SCH", &D, &D, &D, &D, "EQP-MECH-WEH-SCH")

"EQP-MECH-VAC-WEEK" = WEEK-SCHEDULE-PD
 TYPE = FRACTION
 DAY-SCHEDULES = ("EQP-MECH-WEH-SCH")

"EQP-STO-TYP-WEEK" = WEEK-SCHEDULE-PD
 TYPE = FRACTION
 DAY-SCHEDULES = ("EQP-STO-WD-SCH", &D, &D, &D, &D, "EQP-STO-WEH-SCH")

"EQP-STO-VAC-WEEK" = WEEK-SCHEDULE-PD
 TYPE = FRACTION
 DAY-SCHEDULES = ("EQP-STO-WEH-SCH")

"HTG-OFC-TYP-WEEK" = WEEK-SCHEDULE-PD
 TYPE = TEMPERATURE

"HTG-OFC-VAC-WEEK" = WEEK-SCHEDULE-PD
 TYPE = TEMPERATURE
 DAY-SCHEDULES = ("HTG-OFC-SUN-SCH")

"HTG-CLASS-TYP-WEEK" = WEEK-SCHEDULE-PD
 TYPE = TEMPERATURE
 DAY-SCHEDULES = ("HTG-CLASS-WD-SCH", &D, &D, &D, &D, "HTG-CLASS-SAT-SCH", "HTG-CLASS-SUN-SCH")

"HTG-CLASS-VAC-WEEK" = WEEK-SCHEDULE-PD
 TYPE = TEMPERATURE
 DAY-SCHEDULES = ("HTG-CLASS-SUN-SCH")

"HTG-COR-TYP-WEEK" = WEEK-SCHEDULE-PD
 TYPE = TEMPERATURE
 DAY-SCHEDULES = ("HTG-COR-WD-SCH", &D, &D, &D, &D, "HTG-COR-SAT-SCH", "HTG-COR-SUN-SCH")

"HTG-COR-VAC-WEEK" = WEEK-SCHEDULE-PD
 TYPE = TEMPERATURE
 DAY-SCHEDULES = ("HTG-COR-SUN-SCH")
"HTG-MECH-TYP-WEEK" = WEEK-SCHEDULE-PD
 TYPE = TEMPERATURE
 DAY-SCHEDULES = ("HTG-MECH-WD-SCH", &D, &D, &D, &D, "HTG-MECH-WEH-SCH")

"HTG-MECH-VAC-WEEK" = WEEK-SCHEDULE-PD
 TYPE = TEMPERATURE
 DAY-SCHEDULES = ("HTG-MECH-WEH-SCH")

"HTG-STO-TYP-WEEK" = WEEK-SCHEDULE-PD
 TYPE = TEMPERATURE
 DAY-SCHEDULES = ("HTG-STO-WD-SCH", &D, &D, &D, &D, "HTG-STO-WEH-SCH")

"HTG-STO-VAC-WEEK" = WEEK-SCHEDULE-PD
 TYPE = TEMPERATURE
 DAY-SCHEDULES = ("HTG-STO-WEH-SCH")

"CLG-OFC-TYP-WEEK" = WEEK-SCHEDULE-PD
 TYPE = TEMPERATURE

"CLG-OFC-VAC-WEEK" = WEEK-SCHEDULE-PD
 TYPE = TEMPERATURE
 DAY-SCHEDULES = ("CLG-OFC-SUN-SCH")

"CLG-CLASS-TYP-WEEK" = WEEK-SCHEDULE-PD
 TYPE = TEMPERATURE
 DAY-SCHEDULES = ("CLG-CLASS-WD-SCH", &D, &D, &D, &D, "CLG-CLASS-SAT-SCH", "CLG-CLASS-SUN-SCH")

"CLG-CLASS-VAC-WEEK" = WEEK-SCHEDULE-PD
 TYPE = TEMPERATURE
 DAY-SCHEDULES = ("CLG-CLASS-SUN-SCH")

"CLG-COR-TYP-WEEK" = WEEK-SCHEDULE-PD
 TYPE = TEMPERATURE
 DAY-SCHEDULES = ("CLG-COR-WD-SCH", &D, &D, &D, &D, "CLG-COR-SAT-SCH", "CLG-COR-SUN-SCH")

"CLG-COR-VAC-WEEK" = WEEK-SCHEDULE-PD
 TYPE = TEMPERATURE
 DAY-SCHEDULES = ("CLG-COR-SUN-SCH")

"CLG-MECH-TYP-WEEK" = WEEK-SCHEDULE-PD
 TYPE = TEMPERATURE
 DAY-SCHEDULES = ("CLG-MECH-WD-SCH", &D, &D, &D, &D, "CLG-MECH-WEH-SCH")

"CLG-MECH-VAC-WEEK" = WEEK-SCHEDULE-PD
 TYPE = TEMPERATURE
 DAY-SCHEDULES = ("CLG-MECH-WEH-SCH")

"CLG-STO-TYP-WEEK" = WEEK-SCHEDULE-PD
 TYPE = TEMPERATURE
 DAY-SCHEDULES = ("CLG-STO-WD-SCH", &D, &D, &D, &D, "CLG-STO-WEH-SCH")

"CLG-STO-VAC-WEEK" = WEEK-SCHEDULE-PD
 TYPE = TEMPERATURE
DAY-SCHEDULES = ("CLG-STO-WEH-SCH")
...
"FAN-ALL-ALL-WEEK" = WEEK-SCHEDULE-PD
 TYPE = FRACTION
 DAY-SCHEDULES = ("FAN-ALL-ALL-SCH")
...
"INF-ALL-ALL-WEEK" = WEEK-SCHEDULE-PD
 TYPE = FRACTION
 DAY-SCHEDULES = ("INF-ALL-WD-SCH", &D, &D, &D, "INF-ALL-SAT-SCH", "INF-ALL-SUN-SCH")
...
"HTG_AVAIL-ALL-ALL-WEEK" = WEEK-SCHEDULE-PD
 TYPE = ON/OFF
 DAY-SCHEDULES = ("HTG_AVAIL-ALL-ALL-SCH")
...
"CLG_AVAIL-ALL-ALL-WEEK" = WEEK-SCHEDULE-PD
 TYPE = ON/OFF
 DAY-SCHEDULES = ("CLG_AVAIL-ALL-ALL-SCH")
...
"OAD-OFC-ALL-WEEK" = WEEK-SCHEDULE-PD
 TYPE = FRACTION
...
"OAD-CLASS-ALL-WEEK" = WEEK-SCHEDULE-PD
 TYPE = FRACTION
...
"OAD-COR-ALL-WEEK" = WEEK-SCHEDULE-PD
 TYPE = FRACTION
...
"OAD-MECH-ALL-WEEK" = WEEK-SCHEDULE-PD
 TYPE = FRACTION
...
"OAD-STO-ALL-WEEK" = WEEK-SCHEDULE-PD
 TYPE = FRACTION
...
"LITE-OFC-TYP-OCCSEN-WK" = WEEK-SCHEDULE-PD
 TYPE = FRACTION
...
"LITE-CLASS-TYP-OCCSEN-WK" = WEEK-SCHEDULE-PD
 TYPE = FRACTION
...
"FAN-WK-TYP" = WEEK-SCHEDULE-PD
 TYPE = ON/OFF
 DAY-SCHEDULES = ("FAN-WD-TYP", &D, &D, &D, "FAN-SAT-TYP",...
"FAN-SUN-TYP")

"OA-ALL-TYP-WEEK" = WEEK-SCHEDULE-PD
TYPE = FRACTION
DAY-SCHEDULES = ("OA-ALL-WD-SCH", &D, &D, &D, &D, "OA-ALL-SAT-SCH",
"OA-ALL-SUN-SCH")

"OA-ALL-VAC-WEEK" = WEEK-SCHEDULE-PD
TYPE = FRACTION
DAY-SCHEDULES = ("OA-ALL-SUN-SCH", &D, &D, &D, &D, "OA-ALL-SUN-SCH",
"OA-ALL-SUN-SCH")

"DHW-WK-SCH" = WEEK-SCHEDULE-PD
TYPE = FRACTION
DAY-SCHEDULES = ("DHW-WD-SCH", &D, &D, &D, &D, "DHW-SAT-SCH",
"DHW-SUN-SCH")

"MINFLOW-OFC-TYP-WEEK" = WEEK-SCHEDULE-PD
TYPE = FRACTION
DAY-SCHEDULES = ("MINFLOW-OFC-WD-SCH", &D, &D, &D, &D, "MINFLOW-OFC-SAT-SCH",
"MINFLOW-OFC-SUN-SCH")

"MINFLOW-OFC-VAC-WEEK" = WEEK-SCHEDULE-PD
TYPE = FRACTION
DAY-SCHEDULES = ("MINFLOW-OFC-SUN-SCH", &D, &D, &D, &D,
"MINFLOW-OFC-SUN-SCH")

"ELE-WK-FLAG" = WEEK-SCHEDULE-PD
TYPE = FLAG
DAY-SCHEDULES = ("ELE-WD-FLAG", &D, &D, &D, &D, "ELE-WE-FLAG")

"HTG-AVAIL-NOT-ALL-WEEK" = WEEK-SCHEDULE-PD
TYPE = ON/OFF
DAY-SCHEDULES = ("HTG_AVAIL-NOT-ALL-SCH")

"HTG_AVAIL-TEMP-WEEK" = WEEK-SCHEDULE-PD
TYPE = TEMPERATURE
DAY-SCHEDULES = ("HTG_AVAIL-TEMP-SCH", &D, &D, &D, &D,
"HTG_AVAIL-TEMP-SCH")

"EXT-LITE-WIN-WK" = WEEK-SCHEDULE-PD
TYPE = FRACTION
DAY-SCHEDULES = ("EXT-LITE-WINTER", &D, &D, &D, &D, "EXT-LITE-WINTER")

"EXT-LITE-SWING-WK" = WEEK-SCHEDULE-PD
TYPE = FRACTION
DAY-SCHEDULES = ("EXT-LITE-SWING", &D, &D, &D, &D, "EXT-LITE-SWING")

"EXT-LITE-SUM-WK" = WEEK-SCHEDULE-PD
TYPE = FRACTION
DAY-SCHEDULES = ("EXT-LITE-SUMMER", &D, &D, &D, &D, "EXT-LITE-SUMMER")

"HTG-OFC-TYP-WEEK-VAVOCC" = WEEK-SCHEDULE-PD
TYPE = TEMPERATURE
DAY-SCHEDULES = ("HTG-OFC-WD-SCH-VAVOCC", &D, &D, &D, &D, "HTG-OFC-SAT-SCH-VAVOCC",
"HTG-OFC-SUN-SCH-VAVOCC")
"HTG-OFC-VAC-WEEK-VAVOCC" = WEEK-SCHEDULE-PD
 TYPE = TEMPERATURE
 DAY-SCHEDULES = ("HTG-OFC-SUN-SCH-VAVOCC")

"HTG-CLASS-TYP-WEEK-VAVOCC" = WEEK-SCHEDULE-PD
 TYPE = TEMPERATURE
 DAY-SCHEDULES = ("HTG-CLASS-WD-SCH-VAVOCC", &D, &D, &D, &D,
 "HTG-CLASS-SAT-SCH-VAVOCC", "HTG-CLASS-SUN-SCH-VAVOCC")

"HTG-CLASS-VAC-WEEK-VAVOCC" = WEEK-SCHEDULE-PD
 TYPE = TEMPERATURE
 DAY-SCHEDULES = ("HTG-CLASS-SUN-SCH-VAVOCC")

"CLG-OFC-TYP-WEEK-VAVOCC" = WEEK-SCHEDULE-PD
 TYPE = TEMPERATURE
 DAY-SCHEDULES = ("CLG-OFC-WD-SCH-VAVOCC", &D, &D, &D, &D,
 "CLG-OFC-SAT-SCH-VAVOCC", "CLG-OFC-SUN-SCH-VAVOCC")

"CLG-OFC-VAC-WEEK-VAVOCC" = WEEK-SCHEDULE-PD
 TYPE = TEMPERATURE
 DAY-SCHEDULES = ("CLG-OFC-SUN-SCH-VAVOCC")

"CLG-CLASS-TYP-WEEK-VAVOCC" = WEEK-SCHEDULE-PD
 TYPE = TEMPERATURE
 DAY-SCHEDULES = ("CLG-CLASS-WD-SCH-VAVOCC", &D, &D, &D, &D,
 "CLG-CLASS-SAT-SCH-VAVOCC", "CLG-CLASS-SUN-SCH-VAVOCC")

"CLG-CLASS-VAC-WEEK-VAVOCC" = WEEK-SCHEDULE-PD
 TYPE = TEMPERATURE
 DAY-SCHEDULES = ("CLG-CLASS-SUN-SCH-VAVOCC")

"HTG-OFC-TYP-WEEK-VAVMIN" = WEEK-SCHEDULE-PD
 TYPE = FRACTION
 DAY-SCHEDULES = ("HTG-OFC-WD-SCH-VAVMIN", &D, &D, &D, &D,
 "HTG-OFC-SAT-SCH-VAVMIN", "HTG-OFC-SUN-SCH-VAVMIN")

"HTG-OFC-VAC-WEEK-VAVMIN" = WEEK-SCHEDULE-PD
 TYPE = FRACTION
 DAY-SCHEDULES = ("HTG-OFC-SUN-SCH-VAVMIN")

"HTG-CLASS-TYP-WEEK-VAVMIN" = WEEK-SCHEDULE-PD
 TYPE = FRACTION
 DAY-SCHEDULES = ("HTG-CLASS-WD-SCH-VAVMIN", &D, &D, &D, &D,
 "HTG-CLASS-SAT-SCH-VAVMIN", "HTG-CLASS-SUN-SCH-VAVMIN")

"HTG-CLASS-VAC-WEEK-VAVMIN" = WEEK-SCHEDULE-PD
 TYPE = FRACTION
 DAY-SCHEDULES = ("HTG-CLASS-SUN-SCH-VAVMIN")

"CLG-OFC-TYP-WEEK-VAVMIN" = WEEK-SCHEDULE-PD
 TYPE = FRACTION
 DAY-SCHEDULES = ("CLG-OFC-WD-SCH-VAVMIN", &D, &D, &D, &D,
 "CLG-OFC-SAT-SCH-VAVMIN", "CLG-OFC-SUN-SCH-VAVMIN")

"CLG-OFC-VAC-WEEK-VAVMIN" = WEEK-SCHEDULE-PD
 TYPE = FRACTION
 DAY-SCHEDULES = ("CLG-OFC-SUN-SCH-VAVMIN")
"CLG-CLASS-TYP-WEEK-VAVMIN" = WEEK-SCHEDULE-PD
 TYPE = FRACTION
 DAY-SCHEDULES = ("CLG-CLASS-WD-SCH-VAVMIN", &D, &D, &D, &D,
 "CLG-CLASS-SAT-SCH-VAVMIN", "CLG-CLASS-SUN-SCH-VAVMIN")

"CLG-CLASS-VAC-WEEK-VAVMIN" = WEEK-SCHEDULE-PD
 TYPE = FRACTION
 DAY-SCHEDULES = ("CLG-CLASS-SUN-SCH-VAVMIN")

"HTG-OFC-TYP-WEEK-VAVOCC2" = WEEK-SCHEDULE-PD
 TYPE = TEMPERATURE
 DAY-SCHEDULES = ("HTG-OFC-WD-SCH-VAVOCC2", &D, &D, &D, &D,
 "HTG-OFC-SAT-SCH-VAVOCC2", "HTG-OFC-SUN-SCH-VAVOCC2")

"HTG-OFC-VAC-WEEK-VAVOCC2" = WEEK-SCHEDULE-PD
 TYPE = TEMPERATURE
 DAY-SCHEDULES = ("HTG-OFC-SUN-SCH-VAVOCC2")

"HTG-CLASS-TYP-WEEK-VAVOCC2" = WEEK-SCHEDULE-PD
 TYPE = TEMPERATURE
 DAY-SCHEDULES = ("HTG-CLASS-WD-SCH-VAVOCC2", &D, &D, &D, &D,
 "HTG-CLASS-SAT-SCH-VAVOCC2", "HTG-CLASS-SUN-SCH-VAVOCC2")

"HTG-CLASS-VAC-WEEK-VAVOCC2" = WEEK-SCHEDULE-PD
 TYPE = TEMPERATURE
 DAY-SCHEDULES = ("HTG-CLASS-SUN-SCH-VAVOCC2")

"CLG-OFC-TYP-WEEK-VAVOCC2" = WEEK-SCHEDULE-PD
 TYPE = TEMPERATURE
 DAY-SCHEDULES = ("CLG-OFC-WD-SCH-VAVOCC2", &D, &D, &D, &D,
 "CLG-OFC-SAT-SCH-VAVOCC2", "CLG-OFC-SUN-SCH-VAVOCC2")

"CLG-OFC-VAC-WEEK-VAVOCC2" = WEEK-SCHEDULE-PD
 TYPE = TEMPERATURE
 DAY-SCHEDULES = ("CLG-OFC-SUN-SCH-VAVOCC2")

"CLG-CLASS-TYP-WEEK-VAVOCC2" = WEEK-SCHEDULE-PD
 TYPE = TEMPERATURE
 DAY-SCHEDULES = ("CLG-CLASS-WD-SCH-VAVOCC2", &D, &D, &D, &D,
 "CLG-CLASS-SAT-SCH-VAVOCC2", "CLG-CLASS-SUN-SCH-VAVOCC2")

"CLG-CLASS-VAC-WEEK-VAVOCC2" = WEEK-SCHEDULE-PD
 TYPE = TEMPERATURE
 DAY-SCHEDULES = ("CLG-CLASS-SUN-SCH-VAVOCC2")

"HTG-OFC-TYP-WEEK-VAVMIN2" = WEEK-SCHEDULE-PD
 TYPE = FRACTION
 DAY-SCHEDULES = ("HTG-OFC-WD-SCH-VAVMIN2", &D, &D, &D, &D,
 "HTG-OFC-SAT-SCH-VAVMIN2", "HTG-OFC-SUN-SCH-VAVMIN2")

"HTG-OFC-VAC-WEEK-VAVMIN2" = WEEK-SCHEDULE-PD
 TYPE = FRACTION
 DAY-SCHEDULES = ("HTG-OFC-SUN-SCH-VAVMIN2")

"HTG-CLASS-TYP-WEEK-VAVMIN2" = WEEK-SCHEDULE-PD
 TYPE = FRACTION

"HTG-CLASS-VAC-WEEK-VAVMIN2" = WEEK-SCHEDULE-PD
 TYPE = FRACTION
 DAY-SCHEDULES = ("HTG-CLASS-SUN-SCH-VAVMIN2")
DAY_SCHEDULES = ("HTG-CLASS-WD-SCH-VAVMIN2", &D, &D, &D, &D,
 "HTG-CLASS-SAT-SCH-VAVMIN2", "HTG-CLASS-SUN-SCH-VAVMIN2")

"HTG-CLASS-VAC-WEEK-VAVMIN2" = WEEK_SCHEDULE_PD
TYPE = FRACTION
DAY_SCHEDULES = ("HTG-CLASS-SUN-SCH-VAVMIN2")

"CLG-OFC-TYP-WEEK-VAVMIN2" = WEEK_SCHEDULE_PD
TYPE = FRACTION
DAY_SCHEDULES = ("CLG-OFC-WD-SCH-VAVMIN2", &D, &D, &D, &D,
 "CLG-OFC-SAT-SCH-VAVMIN2", "CLG-OFC-SUN-SCH-VAVMIN2")

"CLG-OFC-VAC-WEEK-VAVMIN2" = WEEK_SCHEDULE_PD
TYPE = FRACTION
DAY_SCHEDULES = ("CLG-OFC-SUN-SCH-VAVMIN2")

"CLG-CLASS-TYP-WEEK-VAVMIN2" = WEEK_SCHEDULE_PD
TYPE = FRACTION
DAY_SCHEDULES = ("CLG-CLASS-WD-SCH-VAVMIN2", &D, &D, &D, &D,
 "CLG-CLASS-SAT-SCH-VAVMIN2", "CLG-CLASS-SUN-SCH-VAVMIN2")

"CLG-CLASS-VAC-WEEK-VAVMIN2" = WEEK_SCHEDULE_PD
TYPE = FRACTION
DAY_SCHEDULES = ("CLG-CLASS-SUN-SCH-VAVMIN2")

"ALL-ON-WEEK" = WEEK_SCHEDULE_PD
TYPE = FRACTION
DAY_SCHEDULES = ("ALL-ON-DAY", &D, &D, &D, &D, "ALL-ON-DAY")

$ ---
$ Annual Schedules
$ ---

"OCC-OFC-ANNUAL" = SCHEDULE_PD
TYPE = FRACTION
MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
DAY = (21, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
WEEK_SCHEDULES = ("OCC-OFC-VAC-WEEK", "OCC-OFC-TYP-WEEK",
 "OCC-OFC-VAC-WEEK", "OCC-OFC-TYP-WEEK")

"OCC-CLASS-ANNUAL" = SCHEDULE_PD
TYPE = FRACTION
MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
WEEK_SCHEDULES = ("OCC-CLASS-VAC-WEEK", "OCC-CLASS-TYP-WEEK",
 "OCC-CLASS-TYP-WEEK", "OCC-CLASS-VAC-WEEK")

"OCC-COR-ANNUAL" = SCHEDULE_PD
TYPE = FRACTION
MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
WEEK-SCHEDULES = ("OCC-COR-VAC-WEEK", "OCC-COR-TYP-WEEK",
"OCC-COR-TYP-WEEK", "OCC-COR-VAC-WEEK")

"OCC-MECH-ANNUAL" = SCHEDULE-PD
TYPE = FRACTION
MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
WEEK-SCHEDULES = ("OCC-MECH-VAC-WEEK", "OCC-MECH-TYP-WEEK",
"OCC-MECH-TYP-WEEK", "OCC-MECH-VAC-WEEK")

"OCC-STO-ANNUAL" = SCHEDULE-PD
TYPE = FRACTION
MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
WEEK-SCHEDULES = ("OCC-STO-VAC-WEEK", "OCC-STO-TYP-WEEK",
"OCC-STO-TYP-WEEK", "OCC-STO-VAC-WEEK")

"LITE-OFC-ANNUAL" = SCHEDULE-PD
TYPE = FRACTION
MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
WEEK-SCHEDULES = ("LITE-OFC-VAC-WEEK", "LITE-OFC-TYP-WEEK",
"LITE-OFC-TYP-WEEK", "LITE-OFC-VAC-WEEK")

"LITE-CLASS-ANNUAL" = SCHEDULE-PD
TYPE = FRACTION
MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
WEEK-SCHEDULES = ("LITE-CLASS-VAC-WEEK", "LITE-CLASS-TYP-WEEK",
"LITE-CLASS-VAC-WEEK", "LITE-CLASS-TYP-WEEK", "LITE-CLASS-VAC-WEEK",
"LITE-CLASS-TYP-WEEK", "LITE-CLASS-VAC-WEEK", "LITE-CLASS-TYP-WEEK",
"LITE-CLASS-VAC-WEEK", "LITE-CLASS-TYP-WEEK", "LITE-CLASS-VAC-WEEK",
"LITE-CLASS-TYP-WEEK", "LITE-CLASS-VAC-WEEK")

"LITE-COR-ANNUAL" = SCHEDULE-PD
TYPE = FRACTION
MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
WEEK-SCHEDULES = ("LITE-COR-VAC-WEEK", "LITE-COR-TYP-WEEK",
"LITE-COR-VAC-WEEK", "LITE-COR-TYP-WEEK", "LITE-COR-VAC-WEEK",
"LITE-COR-TYP-WEEK", "LITE-COR-VAC-WEEK", "LITE-COR-TYP-WEEK",
"LITE-COR-VAC-WEEK", "LITE-COR-TYP-WEEK", "LITE-COR-VAC-WEEK",
"LITE-COR-TYP-WEEK", "LITE-COR-VAC-WEEK")
"LITE-MECH-ANNUAL" = SCHEDULE-PD
 TYPE = FRACTION
 MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
 WEEK-SCHEDULES = ("LITE-MECH-VAC-WEEK", "LITE-MECH-TYP-WEEK",
 "LITE-MECH-VAC-WEEK", "LITE-MECH-TYP-WEEK", "LITE-MECH-VAC-WEEK",
 "LITE-MECH-TYP-WEEK", "LITE-MECH-VAC-WEEK", "LITE-MECH-TYP-WEEK",
 "LITE-MECH-VAC-WEEK", "LITE-MECH-TYP-WEEK", "LITE-MECH-VAC-WEEK",
 "LITE-MECH-TYP-WEEK", "LITE-MECH-VAC-WEEK")

"LITE-STO-ANNUAL" = SCHEDULE-PD
 TYPE = FRACTION
 MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
 WEEK-SCHEDULES = ("LITE-STO-VAC-WEEK", "LITE-STO-TYP-WEEK",
 "LITE-STO-VAC-WEEK", "LITE-STO-TYP-WEEK", "LITE-STO-VAC-WEEK",
 "LITE-STO-TYP-WEEK", "LITE-STO-VAC-WEEK", "LITE-STO-TYP-WEEK",
 "LITE-STO-VAC-WEEK", "LITE-STO-TYP-WEEK", "LITE-STO-VAC-WEEK",
 "LITE-STO-TYP-WEEK", "LITE-STO-VAC-WEEK")

"EQP-OFC-ANNUAL" = SCHEDULE-PD
 TYPE = FRACTION
 MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
 WEEK-SCHEDULES = ("EQP-OFC-VAC-WEEK", "EQP-OFC-TYP-WEEK",
 "EQP-OFC-TYP-WEEK", "EQP-OFC-VAC-WEEK")

"EQP-CLASS-ANNUAL" = SCHEDULE-PD
 TYPE = FRACTION
 MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
 WEEK-SCHEDULES = ("EQP-CLASS-VAC-WEEK", "EQP-CLASS-TYP-WEEK",
 "EQP-CLASS-VAC-WEEK", "EQP-CLASS-TYP-WEEK", "EQP-CLASS-VAC-WEEK",
 "EQP-CLASS-TYP-WEEK", "EQP-CLASS-VAC-WEEK", "EQP-CLASS-TYP-WEEK",
 "EQP-CLASS-VAC-WEEK", "EQP-CLASS-TYP-WEEK", "EQP-CLASS-VAC-WEEK",
 "EQP-CLASS-TYP-WEEK", "EQP-CLASS-VAC-WEEK")

"EQP-COR-ANNUAL" = SCHEDULE-PD
 TYPE = FRACTION
 MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
 WEEK-SCHEDULES = ("EQP-COR-VAC-WEEK", "EQP-COR-TYP-WEEK",
 "EQP-COR-VAC-WEEK", "EQP-COR-TYP-WEEK", "EQP-COR-VAC-WEEK",
 "EQP-COR-TYP-WEEK", "EQP-COR-VAC-WEEK", "EQP-COR-TYP-WEEK",
 "EQP-COR-VAC-WEEK", "EQP-COR-TYP-WEEK", "EQP-COR-VAC-WEEK",
 "EQP-COR-TYP-WEEK", "EQP-COR-VAC-WEEK")

"EQP-MECH-ANNUAL" = SCHEDULE-PD
 TYPE = FRACTION
 MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
 WEEK-SCHEDULES = ("EQP-MECH-VAC-WEEK", "EQP-MECH-TYP-WEEK",
 "EQP-MECH-VAC-WEEK", "EQP-MECH-TYP-WEEK", "EQP-MECH-VAC-WEEK",
 "EQP-MECH-TYP-WEEK", "EQP-MECH-VAC-WEEK", "EQP-MECH-TYP-WEEK",
 "EQP-MECH-VAC-WEEK", "EQP-MECH-TYP-WEEK", "EQP-MECH-VAC-WEEK",
 "EQP-MECH-TYP-WEEK", "EQP-MECH-VAC-WEEK")

"EQP-STO-ANNUAL" = SCHEDULE-PD
 TYPE = FRACTION
 MONTH = (1, 2, 4, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)

"HTG-OFC-ANNUAL" = SCHEDULE-PD
 TYPE = TEMPERATURE
 MONTH = (1, 2, 4, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)

"HTG-CLASS-ANNUAL" = SCHEDULE-PD
 TYPE = TEMPERATURE
 MONTH = (1, 2, 4, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)

"HTG-COR-ANNUAL" = SCHEDULE-PD
 TYPE = TEMPERATURE
 MONTH = (1, 2, 4, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)

"HTG-MECH-ANNUAL" = SCHEDULE-PD
 TYPE = TEMPERATURE
 MONTH = (1, 2, 4, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)

"HTG-STO-ANNUAL" = SCHEDULE-PD
 TYPE = TEMPERATURE
 MONTH = (1, 2, 4, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)

"CLG-OFC-ANNUAL" = SCHEDULE-PD
 TYPE = TEMPERATURE
 MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)

"CLG-CLASS-ANNUAL" = SCHEDULE-PD
 TYPE = TEMPERATURE
 MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)

"CLG-COR-ANNUAL" = SCHEDULE-PD
 TYPE = TEMPERATURE
 MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)

"CLG-MECH-ANNUAL" = SCHEDULE-PD
 TYPE = TEMPERATURE
 MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)

"CLG-STO-ANNUAL" = SCHEDULE-PD
 TYPE = TEMPERATURE
 MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)

"FAN-ALL-ANNUAL" = SCHEDULE-PD
TYPE = FRACTION
MONTH = (12)
DAY = (31)
WEEK-SCHEDULES = ("FAN-ALL-ALL-WEEK")
..
"INF-ALL-ANNUAL" = SCHEDULE-PD
TYPE = FRACTION
MONTH = (12)
DAY = (31)
WEEK-SCHEDULES = ("INF-ALL-ALL-WEEK")
..
"HTG_AVAIL-ALL-ANNUAL" = SCHEDULE-PD
TYPE = ON/OFF
MONTH = (12)
DAY = (31)
WEEK-SCHEDULES = ("HTG_AVAIL-ALL-ALL-WEEK")
..
"CLG_AVAIL-ALL-ANNUAL" = SCHEDULE-PD
TYPE = ON/OFF
MONTH = (12)
DAY = (31)
WEEK-SCHEDULES = ("CLG_AVAIL-ALL-ALL-WEEK")
..
"OAD-OFC-ANNUAL" = SCHEDULE-PD
TYPE = FRACTION
MONTH = (12)
DAY = (31)
WEEK-SCHEDULES = ("OAD-OFC-ALL-WEEK")
..
"OAD-CLASS-ANNUAL" = SCHEDULE-PD
TYPE = FRACTION
MONTH = (12)
DAY = (31)
WEEK-SCHEDULES = ("OAD-CLASS-ALL-WEEK")
..
"OAD-COR-ANNUAL" = SCHEDULE-PD
TYPE = FRACTION
MONTH = (12)
DAY = (31)
WEEK-SCHEDULES = ("OAD-COR-ALL-WEEK")
..
"OAD-MECH-ANNUAL" = SCHEDULE-PD
TYPE = FRACTION
MONTH = (12)
DAY = (31)
WEEK-SCHEDULES = ("OAD-MECH-ALL-WEEK")
..
"OAD-STO-ANNUAL" = SCHEDULE-PD
TYPE = FRACTION
MONTH = (12)
DAY = (31)
WEEK-SCHEDULES = ("OAD-STO-ALL-WEEK")
..
"LITE-OFC-OCCSEN-ANNUAL" = SCHEDULE-PD
TYPE = FRACTION
MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
WEEK-SCHEDULES = ("LITE-OF-C-VAC-WEEK", "LITE-OF-C-TYP-OCCSEN-WK",
"LITE-OF-C-VAC-WEEK", "LITE-OF-C-TYP-WEEK", "LITE-OF-C-VAC-WEEK",
"LITE-OF-C-TYP-WEEK", "LITE-OF-C-VAC-WEEK", "LITE-OF-C-TYP-WEEK",
"LITE-OF-C-VAC-WEEK", "LITE-OF-C-TYP-WEEK", "LITE-OF-C-VAC-WEEK",
"LITE-OF-C-TYP-WEEK", "LITE-OF-C-VAC-WEEK")

"LITE-CLASS-OCCSEN-ANNUAL" = SCHEDULE-PD
TYPE = FRACTION
MONTH = (1, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
WEEK-SCHEDULES = ("LITE-CLASS-VAC-WEEK", "LITE-CLASS-TYP-OCCSEN-WK",
"LITE-CLASS-VAC-WEEK", "LITE-CLASS-TYP-WEEK", "LITE-CLASS-VAC-WEEK",
"LITE-CLASS-TYP-WEEK", "LITE-CLASS-VAC-WEEK", "LITE-CLASS-TYP-WEEK",
"LITE-CLASS-VAC-WEEK", "LITE-CLASS-TYP-WEEK", "LITE-CLASS-VAC-WEEK",
"LITE-CLASS-TYP-WEEK", "LITE-CLASS-VAC-WEEK")

"FAN-SCH-ANNUAL" = SCHEDULE-PD
TYPE = ON/OFF
MONTH = (12)
DAY = (31)
WEEK-SCHEDULES = ("FAN-WK-TYP")

"OA-ALL-ANNUAL" = SCHEDULE-PD
TYPE = FRACTION
MONTH = (1, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
WEEK-SCHEDULES = ("OA-ALL-VAC-WEEK", "OA-ALL-TYP-WEEK",
"OCC-OFC-TYP-WEEK", "OCC-OFC-VAC-WEEK")

"DHW-SCH" = SCHEDULE-PD
TYPE = FRACTION
MONTH = (12)
DAY = (31)
WEEK-SCHEDULES = ("DHW-WK-SCH")

"MINFLOW-OFC-ANNUAL" = SCHEDULE-PD
TYPE = FRACTION
MONTH = (1, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
DAY = (21, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
WEEK-SCHEDULES = ("MINFLOW-OFC-VAC-WEEK", "MINFLOW-OFC-TYP-WEEK",
"MINFLOW-OFC-TYP-WEEK", "MINFLOW-OFC-VAC-WEEK")

"ELE-SCH-FLAG" = SCHEDULE-PD
TYPE = FLAG
MONTH = (12)
DAY = (31)
WEEK-SCHEDULES = ("ELE-WK-FLAG")

"HTG_AVAIL-NOT-ALL-ANNUAL" = SCHEDULE-PD
TYPE = ON/OFF
MONTH = (6, 9, 12)
DAY = (15, 15, 31)
WEEK-SCHEDULES = ("HTG_AVAIL-ALL-ALL-WEEK", "HTG-AVAIL-NOT-ALL-WEEK",
 "HTG_AVAIL-ALL-ALL-WEEK")

"HTG_AVAIL-TEMP-ANNUAL" = SCHEDULE-PD
 TYPE = TEMPERATURE
 MONTH = (12)
 DAY = (31)
 WEEK-SCHEDULES = ("HTG_AVAIL-TEMP-WEEK")

"EXT-LIGHTS-SCH" = SCHEDULE-PD
 TYPE = FRACTION
 MONTH = (2, 5, 8, 10, 12)
 DAY = (28, 31, 31, 31, 31)
 WEEK-SCHEDULES = ("EXT-LITE-WIN-WK", "EXT-LITE-SWING-WK",
 "EXT-LITE-SUM-WK", "EXT-LITE-SWING-WK", "EXT-LITE-WIN-WK")

"HTG-OFC-ANNUAL-VAVOCC" = SCHEDULE-PD
 TYPE = TEMPERATURE
 MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
 WEEK-SCHEDULES = ("HTG-OFC-VAC-WEEK-VAVOCC", "HTG-OFC-TYP-WEEK-VAVOCC",
 "HTG-OFC-VAC-WEEK-VAVOCC", "HTG-OFC-TYP-WEEK-VAVOCC",
 "HTG-OFC-VAC-WEEK-VAVOCC", "HTG-OFC-TYP-WEEK-VAVOCC",
 "HTG-OFC-VAC-WEEK-VAVOCC", "HTG-OFC-TYP-WEEK-VAVOCC",
 "HTG-OFC-VAC-WEEK-VAVOCC", "HTG-OFC-TYP-WEEK-VAVOCC",
 "HTG-OFC-VAC-WEEK-VAVOCC", "HTG-OFC-TYP-WEEK-VAVOCC",
 "HTG-OFC-VAC-WEEK-VAVOCC", "HTG-OFC-TYP-WEEK-VAVOCC")

"HTG-CLASS-ANNUAL-VAVOCC" = SCHEDULE-PD
 TYPE = TEMPERATURE
 MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
 WEEK-SCHEDULES = ("HTG-CLASS-VAC-WEEK-VAVOCC", "HTG-CLASS-TYP-WEEK-VAVOCC",
 "HTG-CLASS-VAC-WEEK-VAVOCC", "HTG-CLASS-TYP-WEEK-VAVOCC",
 "HTG-CLASS-VAC-WEEK-VAVOCC", "HTG-CLASS-TYP-WEEK-VAVOCC",
 "HTG-CLASS-VAC-WEEK-VAVOCC", "HTG-CLASS-TYP-WEEK-VAVOCC",
 "HTG-CLASS-VAC-WEEK-VAVOCC", "HTG-CLASS-TYP-WEEK-VAVOCC",
 "HTG-CLASS-VAC-WEEK-VAVOCC", "HTG-CLASS-TYP-WEEK-VAVOCC",
 "HTG-CLASS-VAC-WEEK-VAVOCC", "HTG-CLASS-TYP-WEEK-VAVOCC")

"CLG-OFC-ANNUAL-VAVOCC" = SCHEDULE-PD
 TYPE = TEMPERATURE
 MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
 WEEK-SCHEDULES = ("CLG-OFC-VAC-WEEK-VAVOCC", "CLG-OFC-TYP-WEEK-VAVOCC",
 "CLG-OFC-VAC-WEEK-VAVOCC", "CLG-OFC-TYP-WEEK-VAVOCC",
 "CLG-OFC-VAC-WEEK-VAVOCC", "CLG-OFC-TYP-WEEK-VAVOCC",
 "CLG-OFC-VAC-WEEK-VAVOCC", "CLG-OFC-TYP-WEEK-VAVOCC",
 "CLG-OFC-VAC-WEEK-VAVOCC", "CLG-OFC-TYP-WEEK-VAVOCC",
 "CLG-OFC-VAC-WEEK-VAVOCC", "CLG-OFC-TYP-WEEK-VAVOCC",
 "CLG-OFC-VAC-WEEK-VAVOCC", "CLG-OFC-TYP-WEEK-VAVOCC")

"CLG-CLASS-ANNUAL-VAVOCC" = SCHEDULE-PD
 TYPE = TEMPERATURE
MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
WEEK-SCHEDULES = ("CLG-CLASS-VAC-WEEK-VAVOCC",
 "CLG-CLASS-TYP-WEEK-VAVOCC", "CLG-CLASS-VAC-WEEK-VAVOCC",
 "CLG-CLASS-TYP-WEEK-VAVOCC", "CLG-CLASS-VAC-WEEK-VAVOCC",
 "CLG-CLASS-TYP-WEEK-VAVOCC", "CLG-CLASS-VAC-WEEK-VAVOCC",
 "CLG-CLASS-TYP-WEEK-VAVOCC", "CLG-CLASS-VAC-WEEK-VAVOCC",
 "CLG-CLASS-TYP-WEEK-VAVOCC", "CLG-CLASS-VAC-WEEK-VAVOCC"
)

"HTG-OFC-ANNUAL-VAVMIN" = SCHEDULE-PD
 TYPE = FRACTION
 MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
 WEEK-SCHEDULES = ("HTG-OFC-VAC-WEEK-VAVMIN", "HTG-OFC-TYP-WEEK-VAVMIN",
 "HTG-OFC-VAC-WEEK-VAVMIN", "HTG-OFC-TYP-WEEK-VAVMIN",
 "HTG-OFC-VAC-WEEK-VAVMIN", "HTG-OFC-TYP-WEEK-VAVMIN",
 "HTG-OFC-VAC-WEEK-VAVMIN", "HTG-OFC-TYP-WEEK-VAVMIN",
 "HTG-OFC-VAC-WEEK-VAVMIN", "HTG-OFC-TYP-WEEK-VAVMIN",
 "HTG-OFC-VAC-WEEK-VAVMIN", "HTG-OFC-TYP-WEEK-VAVMIN"
)

"HTG-CLASS-ANNUAL-VAVMIN" = SCHEDULE-PD
 TYPE = FRACTION
 MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
 WEEK-SCHEDULES = ("HTG-CLASS-VAC-WEEK-VAVMIN", "HTG-CLASS-TYP-WEEK-VAVMIN",
 "HTG-CLASS-VAC-WEEK-VAVMIN", "HTG-CLASS-TYP-WEEK-VAVMIN",
 "HTG-CLASS-VAC-WEEK-VAVMIN", "HTG-CLASS-TYP-WEEK-VAVMIN",
 "HTG-CLASS-VAC-WEEK-VAVMIN", "HTG-CLASS-TYP-WEEK-VAVMIN",
 "HTG-CLASS-VAC-WEEK-VAVMIN", "HTG-CLASS-TYP-WEEK-VAVMIN",
 "HTG-CLASS-VAC-WEEK-VAVMIN", "HTG-CLASS-TYP-WEEK-VAVMIN"
)

"CLG-OFC-ANNUAL-VAVMIN" = SCHEDULE-PD
 TYPE = FRACTION
 MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
 WEEK-SCHEDULES = ("CLG-OFC-VAC-WEEK-VAVMIN", "CLG-OFC-TYP-WEEK-VAVMIN",
 "CLG-OFC-VAC-WEEK-VAVMIN", "CLG-OFC-TYP-WEEK-VAVMIN",
 "CLG-OFC-VAC-WEEK-VAVMIN", "CLG-OFC-TYP-WEEK-VAVMIN",
 "CLG-OFC-VAC-WEEK-VAVMIN", "CLG-OFC-TYP-WEEK-VAVMIN",
 "CLG-OFC-VAC-WEEK-VAVMIN", "CLG-OFC-TYP-WEEK-VAVMIN",
 "CLG-OFC-VAC-WEEK-VAVMIN", "CLG-OFC-TYP-WEEK-VAVMIN"
)

"CLG-CLASS-ANNUAL-VAVMIN" = SCHEDULE-PD
 TYPE = FRACTION
 MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
 WEEK-SCHEDULES = ("CLG-CLASS-VAC-WEEK-VAVMIN", "CLG-CLASS-TYP-WEEK-VAVMIN",
 "CLG-CLASS-VAC-WEEK-VAVMIN", "CLG-CLASS-TYP-WEEK-VAVMIN",
 "CLG-CLASS-VAC-WEEK-VAVMIN", "CLG-CLASS-TYP-WEEK-VAVMIN",
 "CLG-CLASS-VAC-WEEK-VAVMIN", "CLG-CLASS-TYP-WEEK-VAVMIN",
 "CLG-CLASS-VAC-WEEK-VAVMIN", "CLG-CLASS-TYP-WEEK-VAVMIN",
 "CLG-CLASS-VAC-WEEK-VAVMIN", "CLG-CLASS-TYP-WEEK-VAVMIN"
)
"HTG-OFC-ANNUAL-VAVOCC2" = SCHEDULE-PD
 TYPE = TEMPERATURE
 MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
 WEEK-SCHEDULES = ("HTG-OFC-VAC-WEEK-VAVOCC2",
 "HTG-OFC-TYP-WEEK-VAVOCC2",
 "HTG-OFC-VAC-WEEK-VAVOCC2",
 "HTG-OFC-TYP-WEEK-VAVOCC2",
 "HTG-OFC-VAC-WEEK-VAVOCC2",
 "HTG-OFC-TYP-WEEK-VAVOCC2",
 "HTG-OFC-VAC-WEEK-VAVOCC2",
 "HTG-OFC-TYP-WEEK-VAVOCC2",
 "HTG-OFC-VAC-WEEK-VAVOCC2",
 "HTG-OFC-TYP-WEEK-VAVOCC2",
 "HTG-OFC-VAC-WEEK-VAVOCC2")

"HTG-CLASS-ANNUAL-VAVOCC2" = SCHEDULE-PD
 TYPE = TEMPERATURE
 MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
 WEEK-SCHEDULES = ("HTG-CLASS-VAC-WEEK-VAVOCC2",
 "HTG-CLASS-TYP-WEEK-VAVOCC2",
 "HTG-CLASS-VAC-WEEK-VAVOCC2",
 "HTG-CLASS-TYP-WEEK-VAVOCC2",
 "HTG-CLASS-VAC-WEEK-VAVOCC2",
 "HTG-CLASS-TYP-WEEK-VAVOCC2",
 "HTG-CLASS-VAC-WEEK-VAVOCC2",
 "HTG-CLASS-TYP-WEEK-VAVOCC2",
 "HTG-CLASS-VAC-WEEK-VAVOCC2",
 "HTG-CLASS-TYP-WEEK-VAVOCC2",
 "HTG-CLASS-VAC-WEEK-VAVOCC2")

"CLG-OFC-ANNUAL-VAVOCC2" = SCHEDULE-PD
 TYPE = TEMPERATURE
 MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
 WEEK-SCHEDULES = ("CLG-OFC-VAC-WEEK-VAVOCC2",
 "CLG-OFC-TYP-WEEK-VAVOCC2",
 "CLG-OFC-VAC-WEEK-VAVOCC2",
 "CLG-OFC-TYP-WEEK-VAVOCC2",
 "CLG-OFC-VAC-WEEK-VAVOCC2",
 "CLG-OFC-TYP-WEEK-VAVOCC2",
 "CLG-OFC-VAC-WEEK-VAVOCC2",
 "CLG-OFC-TYP-WEEK-VAVOCC2",
 "CLG-OFC-VAC-WEEK-VAVOCC2",
 "CLG-OFC-TYP-WEEK-VAVOCC2",
 "CLG-OFC-VAC-WEEK-VAVOCC2")

"CLG-CLASS-ANNUAL-VAVOCC2" = SCHEDULE-PD
 TYPE = TEMPERATURE
 MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
 WEEK-SCHEDULES = ("CLG-CLASS-VAC-WEEK-VAVOCC2",
 "CLG-CLASS-TYP-WEEK-VAVOCC2",
 "CLG-CLASS-VAC-WEEK-VAVOCC2",
 "CLG-CLASS-TYP-WEEK-VAVOCC2",
 "CLG-CLASS-VAC-WEEK-VAVOCC2",
 "CLG-CLASS-TYP-WEEK-VAVOCC2",
 "CLG-CLASS-VAC-WEEK-VAVOCC2",
 "CLG-CLASS-TYP-WEEK-VAVOCC2",
 "CLG-CLASS-VAC-WEEK-VAVOCC2",
 "CLG-CLASS-TYP-WEEK-VAVOCC2",
 "CLG-CLASS-VAC-WEEK-VAVOCC2")

"HTG-OFC-ANNUAL-VAVMIN2" = SCHEDULE-PD
 TYPE = FRACTION
 MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
 WEEK-SCHEDULES = ("HTG-OFC-VAC-WEEK-VAVMIN2",
 "HTG-OFC-TYP-WEEK-VAVMIN2",
 "HTG-OFC-VAC-WEEK-VAVMIN2",
 "HTG-OFC-TYP-WEEK-VAVMIN2",
 "HTG-OFC-VAC-WEEK-VAVMIN2",
 "HTG-OFC-TYP-WEEK-VAVMIN2",
 "HTG-OFC-VAC-WEEK-VAVMIN2",
 "HTG-OFC-TYP-WEEK-VAVMIN2",
 "HTG-OFC-VAC-WEEK-VAVMIN2",
 "HTG-OFC-TYP-WEEK-VAVMIN2",
 "HTG-OFC-VAC-WEEK-VAVMIN2")
"HTG-OFC-TYP-WEEK-VAVMIN2", "HTG-OFC-VAC-WEEK-VAVMIN2",
"HTG-OFC-TYP-WEEK-VAVMIN2", "HTG-OFC-VAC-WEEK-VAVMIN2",
"HTG-OFC-TYP-WEEK-VAVMIN2", "HTG-OFC-VAC-WEEK-VAVMIN2")

"HTG-CLASS-ANNUAL-VAVMIN2" = SCHEDULE-PD
 TYPE = FRACTION
 MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
 WEEK-SCHEDULES = ("HTG-CLASS-VAC-WEEK-VAVMIN2",
 "HTG-CLASS-TYP-WEEK-VAVMIN2", "HTG-CLASS-VAC-WEEK-VAVMIN2",
 "HTG-CLASS-TYP-WEEK-VAVMIN2", "HTG-CLASS-VAC-WEEK-VAVMIN2",
 "HTG-CLASS-TYP-WEEK-VAVMIN2", "HTG-CLASS-VAC-WEEK-VAVMIN2",
 "HTG-CLASS-TYP-WEEK-VAVMIN2", "HTG-CLASS-VAC-WEEK-VAVMIN2",
 "HTG-CLASS-TYP-WEEK-VAVMIN2", "HTG-CLASS-VAC-WEEK-VAVMIN2")

"CLG-OFC-ANNUAL-VAVMIN2" = SCHEDULE-PD
 TYPE = FRACTION
 MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
 WEEK-SCHEDULES = ("CLG-OFC-VAC-WEEK-VAVMIN2",
 "CLG-OFC-TYP-WEEK-VAVMIN2", "CLG-OFC-VAC-WEEK-VAVMIN2",
 "CLG-OFC-TYP-WEEK-VAVMIN2", "CLG-OFC-VAC-WEEK-VAVMIN2",
 "CLG-OFC-TYP-WEEK-VAVMIN2", "CLG-OFC-VAC-WEEK-VAVMIN2",
 "CLG-OFC-TYP-WEEK-VAVMIN2", "CLG-OFC-VAC-WEEK-VAVMIN2",
 "CLG-OFC-TYP-WEEK-VAVMIN2", "CLG-OFC-VAC-WEEK-VAVMIN2")

"CLG-CLASS-ANNUAL-VAVMIN2" = SCHEDULE-PD
 TYPE = FRACTION
 MONTH = (1, 2, 2, 4, 4, 5, 5, 6, 7, 8, 9, 12, 12)
 DAY = (22, 18, 25, 7, 15, 18, 28, 29, 8, 10, 3, 25, 31)
 WEEK-SCHEDULES = ("CLG-CLASS-VAC-WEEK-VAVMIN2",
 "CLG-CLASS-TYP-WEEK-VAVMIN2", "CLG-CLASS-VAC-WEEK-VAVMIN2",
 "CLG-CLASS-TYP-WEEK-VAVMIN2", "CLG-CLASS-VAC-WEEK-VAVMIN2",
 "CLG-CLASS-TYP-WEEK-VAVMIN2", "CLG-CLASS-VAC-WEEK-VAVMIN2",
 "CLG-CLASS-TYP-WEEK-VAVMIN2", "CLG-CLASS-VAC-WEEK-VAVMIN2",
 "CLG-CLASS-TYP-WEEK-VAVMIN2", "CLG-CLASS-VAC-WEEK-VAVMIN2")

"ALL-ON-SCH" = SCHEDULE-PD
 TYPE = FRACTION
 MONTH = (12)
 DAY = (31)
 WEEK-SCHEDULES = ("ALL-ON-WEEK")

$ ---
$ Polygons
$ ---

"Floor-1-XY" = POLYGON
 V1 = (0, 0)
 V2 = (13, 0)
 V3 = (13, -4)
 V4 = (33, -4)
V5 = (33, 0)
V6 = (116, 0)
V7 = (116, 99)
V8 = (102, 99)
V9 = (102, 105)
V10 = (12, 105)
V11 = (12, 35)
V12 = (0, 35)

"Z01-191-COR-XY" = POLYGON
V1 = (0, 0)
V2 = (13, 0)
V3 = (13, -4)
V4 = (17, -4)
V5 = (29, -4)
V6 = (33, -4)
V7 = (33, 22)
V8 = (22, 22)
V9 = (22, 105)
V10 = (20, 105)
V11 = (15, 105)
V12 = (12, 105)
V13 = (12, 50)
V14 = (12, 47)
V15 = (12, 45)
V16 = (12, 42)
V17 = (12, 40)
V18 = (12, 37)
V19 = (12, 35)
V20 = (0, 35)
V21 = (0, 25)
V22 = (0, 22)

"Z02-195-RR-XY" = POLYGON
V1 = (22, 92)
V2 = (47, 92)
V3 = (47, 105)
V4 = (22, 105)

"Z03-199-STO-XY" = POLYGON
V1 = (54, 92)
V2 = (91, 92)
V3 = (91, 105)
V4 = (54, 105)

"Z04-191-COR-XY" = POLYGON
V1 = (33, 14)
V2 = (102, 14)
V3 = (102, 91)
V4 = (116, 91)
V5 = (116, 99)
V6 = (102, 99)
V7 = (102, 105)
V8 = (91, 105)
V9 = (91, 92)
V10 = (22, 92)
V11 = (22, 84)
V12 = (94, 84)
V13 = (94, 22)
V14 = (33, 22)

"Z05-10A-CLA-XY" = POLYGON
V1 = (22, 53)
V2 = (53, 53)
V3 = (53, 84)
V4 = (22, 84)

"Z06-10B-CLA-XY" = POLYGON
V1 = (22, 22)
V2 = (53, 22)
V3 = (53, 53)
V4 = (22, 53)

"Z07-110-CLAB-XY" = POLYGON
V1 = (53, 53)
V2 = (73, 53)
V3 = (73, 84)
V4 = (53, 84)

"Z08-127-CLAB-XY" = POLYGON
V1 = (53, 22)
V2 = (73, 22)
V3 = (73, 53)
V4 = (53, 53)

"Z09-112-CLAB-XY" = POLYGON
V1 = (73, 53)
V2 = (94, 53)
V3 = (94, 84)
V4 = (73, 84)

"Z10-125-CLAB-XY" = POLYGON
V1 = (73, 22)
V2 = (94, 22)
V3 = (94, 53)
V4 = (73, 53)

"Z11-130-OFC-XY" = POLYGON
V1 = (33, 0)
V2 = (36, 0)
V3 = (39, 0)
V4 = (46, 0)
V5 = (49, 0)
V6 = (56, 0)
V7 = (59, 0)
V8 = (66, 0)
V9 = (69, 0)
V10 = (76, 0)
V11 = (79, 0)
V12 = (86, 0)
V13 = (89, 0)
V14 = (96, 0)
V15 = (99, 0)
V16 = (102, 0)
V17 = (102, 14)
V18 = (33, 14)
...
"Z12-126-OFC-XY" = POLYGON
V1 = (102, 0)
V2 = (106, 0)
V3 = (109, 0)
V4 = (116, 0)
V5 = (116, 10)
V6 = (116, 13)
V7 = (116, 16)
V8 = (102, 16)
...
"Z13-120-OFC-XY" = POLYGON
V1 = (102, 16)
V2 = (116, 16)
V3 = (116, 21)
V4 = (116, 24)
V5 = (116, 32)
V6 = (116, 35)
V7 = (116, 43)
V8 = (116, 46)
V9 = (116, 54)
V10 = (116, 57)
V11 = (116, 65)
V12 = (116, 68)
V13 = (116, 76)
V14 = (116, 79)
V15 = (116, 87)
V16 = (116, 90)
V17 = (116, 91)
V18 = (102, 91)
...
"Z14-199-DATA-XY" = POLYGON
V1 = (47, 92)
V2 = (54, 92)
V3 = (54, 105)
V4 = (47, 105)
...
"Floor-2-XY" = POLYGON
V1 = (0, 0)
V2 = (12, 0)
V3 = (12, -4)
V4 = (33, -4)
V5 = (33, 0)
V6 = (115, 0)
V7 = (115, 99)
V8 = (101, 99)
V9 = (101, 105)
V10 = (11, 105)
V11 = (11, 35)
V12 = (0, 35)
...
"Z15-293-COR-XY" = POLYGON
V1 = (0, 0)
V2 = (12, 0)
V3 = (12, 14)
V4 = (25, 14)
V5 = (25, 22)
V6 = (22, 22)
V7 = (22, 106)
V8 = (11, 106)
V9 = (11, 35)
V10 = (0, 35)

"Z16-295-RR-XY" = POLYGON
V1 = (22, 92)
V2 = (47, 92)
V3 = (47, 105)
V4 = (22, 105)

"Z17-299-DATA-XY" = POLYGON
V1 = (47, 92)
V2 = (54, 92)
V3 = (54, 105)
V4 = (47, 105)

"Z18-209-OFC-XY" = POLYGON
V1 = (54, 92)
V2 = (81, 92)
V3 = (81, 105)
V4 = (54, 105)

"Z19-291-COR-XY" = POLYGON
V1 = (25, 14)
V2 = (81, 14)
V3 = (81, 92)
V4 = (22, 92)
V5 = (22, 84)
V6 = (73, 84)
V7 = (73, 22)
V8 = (25, 22)

"Z20-206-CLAB-XY" = POLYGON
V1 = (22, 53)
V2 = (42, 53)
V3 = (42, 84)
V4 = (22, 84)

"Z21-212-LEARN-XY" = POLYGON
V1 = (22, 22)
V2 = (42, 22)
V3 = (42, 53)
V4 = (22, 53)

"Z22-208-CLAB-XY" = POLYGON
V1 = (42, 53)
V2 = (63, 53)
V3 = (63, 84)
V4 = (42, 84)

"Z23-212-LEARN-XY" = POLYGON
V1 = (42, 22)
V2 = (62, 22)
V3 = (62, 34)
V4 = (73, 34)
V5 = (73, 45)
V6 = (62, 45)
V7 = (62, 53)
V8 = (42, 53)

"Z24-210-OFC-XY" = POLYGON
V1 = (62, 45)
V2 = (73, 45)
V3 = (73, 84)
V4 = (62, 84)

"Z25-212-MEDIA-XY" = POLYGON
V1 = (62, 22)
V2 = (73, 22)
V3 = (73, 34)
V4 = (62, 34)

"Z26-211-FUND-XY" = POLYGON
V1 = (81, 52)
V2 = (115, 52)
V3 = (115, 99)
V4 = (101, 99)
V5 = (101, 105)
V6 = (81, 105)

"Z27-215-BEDLAB-XY" = POLYGON
V1 = (81, 14)
V2 = (115, 14)
V3 = (115, 52)
V4 = (81, 52)

"Z28-217-LOUNGE-XY" = POLYGON
V1 = (72, 0)
V2 = (76, 0)
V3 = (79, 0)
V4 = (82, 0)
V5 = (115, 0)
V6 = (115, 14)
V7 = (72, 14)

"Z29-223-OFC-XY" = POLYGON
V1 = (12, 0)
V2 = (16, 0)
V3 = (19, 0)
V4 = (26, 0)
V5 = (29, 0)
V6 = (33, 0)
V7 = (36, 0)
V8 = (39, 0)
V9 = (46, 0)
V10 = (49, 0)
V11 = (56, 0)
V12 = (59, 0)
V13 = (66, 0)
V14 = (69, 0)
V15 = (72, 0)
V16 = (72, 14)
V17 = (12, 14)
...
"Z01-191-COR-XY - SMirro" = POLYGON
V1 = (0, 0)
V2 = (22, 0)
V3 = (25, 0)
V4 = (35, 0)
V5 = (35, 12)
V6 = (37, 12)
V7 = (40, 12)
V8 = (42, 12)
V9 = (45, 12)
V10 = (47, 12)
V11 = (50, 12)
V12 = (105, 12)
V13 = (105, 15)
V14 = (105, 20)
V15 = (105, 22)
V16 = (22, 22)
V17 = (22, 33)
V18 = (-4, 33)
V19 = (-4, 29)
V20 = (-4, 17)
V21 = (-4, 13)
V22 = (0, 13)
...
"Z04-191-COR-XY - SMirro" = POLYGON
V1 = (14, 33)
V2 = (22, 33)
V3 = (22, 94)
V4 = (84, 94)
V5 = (84, 22)
V6 = (92, 22)
V7 = (92, 91)
V8 = (105, 91)
V9 = (105, 102)
V10 = (99, 102)
V11 = (99, 116)
V12 = (91, 116)
V13 = (91, 102)
V14 = (14, 102)
...
"Z11-130-OFC-XY - SMirro" = POLYGON
V1 = (0, 33)
V2 = (14, 33)
V3 = (14, 102)
V4 = (0, 102)
V5 = (0, 99)
V6 = (0, 96)
V7 = (0, 89)
V8 = (0, 86)
V9 = (0, 79)
V10 = (0, 76)
V11 = (0, 69)
V12 = (0, 66)
$ \begin{align*}
V13 & = (0, 59) \\
V14 & = (0, 56) \\
V15 & = (0, 49) \\
V16 & = (0, 46) \\
V17 & = (0, 39) \\
V18 & = (0, 36) \\
\ldots
\end{align*}$

"Z12-126-OFC-XY - SMirro" = POLYGON

\begin{align*}
V1 & = (0, 102) \\
V2 & = (16, 102) \\
V3 & = (16, 116) \\
V4 & = (13, 116) \\
V5 & = (10, 116) \\
V6 & = (0, 116) \\
V7 & = (0, 109) \\
V8 & = (0, 106) \\
\ldots
\end{align*}

"Z13-120-OFC-XY - SMirro" = POLYGON

\begin{align*}
V1 & = (16, 102) \\
V2 & = (91, 102) \\
V3 & = (91, 116) \\
V4 & = (90, 116) \\
V5 & = (87, 116) \\
V6 & = (79, 116) \\
V7 & = (76, 116) \\
V8 & = (68, 116) \\
V9 & = (65, 116) \\
V10 & = (57, 116) \\
V11 & = (54, 116) \\
V12 & = (46, 116) \\
V13 & = (43, 116) \\
V14 & = (35, 116) \\
V15 & = (32, 116) \\
V16 & = (24, 116) \\
V17 & = (21, 116) \\
V18 & = (16, 116) \\
\ldots
\end{align*}

"Z01-101-COR-ROOF-XY" = POLYGON

\begin{align*}
V1 & = (0, 0) \\
V2 & = (20, 0) \\
V3 & = (20, 4) \\
V4 & = (0, 4) \\
\ldots
\end{align*}

$---$
$Wall Parameters$
$---$

$---$
$Fixed and Building Shades$
$---$
"BASELINE 1" = BASELINE
...

"Floor-1" = FLOOR
 Z = 0
 POLYGON = "Floor-1-XY"
 SHAPE = POLYGON
 FLOOR-HEIGHT = 14
 SPACE-HEIGHT = 14
 C-DIAGRAM-DATA = *Bldg Envelope & Loads 1 Diag Data*
...

"Z01-191-COR" = SPACE
 SHAPE = POLYGON
 PEOPLE-SCHEDULE = "OCC-COR-ANNUAL"
 LIGHTING-SCHEDUL = ("LITE-COR-ANNUAL")
 EQUIP-SCHEDULE = ("EQP-COR-ANNUAL")
 INF-SCHEDULE = "INF-ALL-ANNUAL"
 LIGHTING-TYPE = (REC-FLUOR-NV)
 INF-METHOD = AIR-CHANGE
 AIR-CHANGES/HR = 0.2
 PEOPLE-HG-LAT = 250
 PEOPLE-HG-SENS = 250
 NUMBER-OF-PEOPLE = 3
 LIGHTING-W/AREA = (0.92)
 EQUIPMENT-W/AREA = (0.07)
 POLYGON = "Z01-191-COR-XY"
...

"W01-Z01-191-COR" = EXTERIOR-WALL
 CONSTRUCTION = "W-BRICK-CONS"
 LOCATION = SPACE-V1
...

"W02-Z01-191-COR" = EXTERIOR-WALL
 CONSTRUCTION = "W-BRICK-CONS"
 HEIGHT = 25
 LOCATION = SPACE-V2
...

"WIN01-W02-Z01-191-COR" = WINDOW
 GLASS-TYPE = "TYP-GLASS-1"
 X = 0.5
 Y = 8
 HEIGHT = 12
 WIDTH = 3
...
"W03-Z01-191-COR" = EXTERIOR-WALL
 CONSTRUCTION = "W-BRICK-CONS"
 HEIGHT = 25
 LOCATION = SPACE-V3

"WIN01-W03-Z01-191-COR" = WINDOW
 GLASS-TYPE = "TYP-GLASS-1"
 HEIGHT = 20
 WIDTH = 3.75

"W04-Z01-191-COR" = EXTERIOR-WALL
 CONSTRUCTION = "W-BRICK-CONS"
 HEIGHT = 25
 LOCATION = SPACE-V4

"WIN01-W04-Z01-191-COR" = WINDOW
 GLASS-TYPE = "TYP-GLASS-1"
 X = 0
 Y = 0
 HEIGHT = 10
 WIDTH = 11.5
 SETBACK = 0
 OVERHANG-A = 4
 OVERHANG-W = 19.5
 OVERHANG-D = 0

"WIN02-W04-Z01-191-COR" = WINDOW
 GLASS-TYPE = "TYP-GLASS-1"
 X = 0
 Y = 10
 HEIGHT = 12
 WIDTH = 11.5
 SETBACK = 0
 OVERHANG-A = 4
 OVERHANG-W = 19.5
 OVERHANG-D = 0

"W05-Z01-191-COR" = EXTERIOR-WALL
 CONSTRUCTION = "W-BRICK-CONS"
 HEIGHT = 25
 LOCATION = SPACE-V5

"WIN01-W05-Z01-191-COR" = WINDOW
 GLASS-TYPE = "TYP-GLASS-1"
 HEIGHT = 20
 WIDTH = 3.75

"W06-Z01-191-COR" = EXTERIOR-WALL
 CONSTRUCTION = "W-BRICK-CONS"
 HEIGHT = 25
 WIDTH = 4
 LOCATION = SPACE-V6

"WIN01-W06-Z01-191-COR" = WINDOW
 GLASS-TYPE = "TYP-GLASS-1"
 X = 0.5
 Y = 8
LOCATION = SPACE-V18
.. "W17-Z01-191-COR" = EXTERIOR-WALL
 CONSTRUCTION = "W-BRICK-CONS"
 LOCATION = SPACE-V19
.. "W18-Z01-191-COR" = EXTERIOR-WALL
 CONSTRUCTION = "W-BRICK-CONS"
 LOCATION = SPACE-V20
.. "W19-Z01-191-COR" = EXTERIOR-WALL
 CONSTRUCTION = "W-BRICK-CONS"
 LOCATION = SPACE-V21
.. "WIN01-W18-Z01-191-COR" = WINDOW
 GLASS-TYPE = "TYP-GLASS-N"
 X = 0
 Y = 0
 HEIGHT = 7
 WIDTH = 3
 SETBACK = 0
.. "W20-Z01-191-COR" = EXTERIOR-WALL
 CONSTRUCTION = "W-BRICK-CONS"
 LOCATION = SPACE-V22
.. "R01-Z01-191-COR" = EXTERIOR-WALL
 CONSTRUCTION = "R-TYP-CONS"
 X = 13
 Y = -4
 Z = 25
 LOCATION = TOP
 POLYGON = "Z01-101-COR-ROOF-XY"
.. "UF01-Z01-191-COR" = UNDERGROUND-WALL
 CONSTRUCTION = "UF-TYP-CONS"
 U-EFFECTIVE = 0.0599
 LOCATION = BOTTOM
.. "Z02-195-RR" = SPACE
 SHAPE = POLYGON
 PEOPLE-SCHEDULE = "OCC-COR-ANNUAL"
 LIGHTING-SCHEDULE = ("LITE-COR-ANNUAL")
 EQUIP-SCHEDULE = ("EQP-COR-ANNUAL")
 INF-SCHEDULE = "INF-ALL-ANNUAL"
 LIGHTING-TYPE = (REC-FLUOR-NV)
 INF-METHOD = AIR-CHANGE
 PEOPLE-HG-LAT = 250
 PEOPLE-HG-SENS = 250
 NUMBER-OF-PEOPLE = 1
 LIGHTING-W/AREA = (1.08)
 EQUIPMENT-W/AREA = (0.07)
 POLYGON = "Z02-195-RR-XY"
.. "Z03-199-STO" = SPACE
 SHAPE = POLYGON
 PEOPLE-SCHEDULE = "OCC-MECH-ANNUAL"
LIGHTING-SCHEDULE = ("LITE-MECH-ANNUAL")
EQUIP-SCHEDULE = ("EQP-MECH-ANNUAL")
INF-SCHEDULE = "INF-ALL-ANNUAL"
LIGHTING-TYPE = (REC-FLUOR-NV)
INF-METHOD = AIR-CHANGE
PEOPLE-HG-LAT = 250
PEOPLE-HG-SENS = 250
NUMBER-OF-PEOPLE = 1
LIGHTING-W/AREA = (1.14)
EQUIPMENT-W/AREA = (0.07)
POLYGON = "Z03-199-STO-XY"

"Z04-191-COR" = SPACE
SHAPE = POLYGON
PEOPLE-SCHEDULE = "OCC-COR-ANNUAL"
LIGHTING-SCHEDULE = ("LITE-COR-ANNUAL")
EQUIP-SCHEDULE = ("EQP-COR-ANNUAL")
INF-SCHEDULE = "INF-ALL-ANNUAL"
LIGHTING-TYPE = (REC-FLUOR-NV)
INF-METHOD = AIR-CHANGE
AIR-CHANGES/HR = 0.2
PEOPLE-HG-LAT = 250
PEOPLE-HG-SENS = 250
NUMBER-OF-PEOPLE = 3
LIGHTING-W/AREA = (0.89)
EQUIPMENT-W/AREA = (0.07)
POLYGON = "Z04-191-COR-XY"

"W01-Z04-191-COR" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V4

"WIN01-W01-Z04-191-COR" = WINDOW
GLASS-TYPE = "TYP-GLASS-1"
X = 1
HEIGHT = 7
WIDTH = 6
OVERHANG-D = 0

"W02-Z04-191-COR" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V5

"W03-Z04-191-COR" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V6

"UF01-Z04-191-COR" = UNDERGROUND-WALL
CONSTRUCTION = "UF-TYP-CONS"
U-EFFECTIVE = 0.0105
LOCATION = BOTTOM

"Z05-10A-CLA" = SPACE
SHAPE = POLYGON
PEOPLE-SCHEDULE = "OCC-CLASS-ANNUAL"
LIGHTING-SCHEDULE = ("LITE-CLASS-ANNUAL")
EQUIP-SCHEDULE = ("EQP-CLASS-ANNUAL")
INF-SCHEDULE = "INF-ALL-ANNUAL"
LIGHTING-TYPE = (REC-FLUOR-NV)
INF-METHOD = AIR-CHANGE
PEOPLE-HG-LAT = 250
PEOPLE-HG-SENS = 250
NUMBER-OF-PEOPLE = 17
LIGHTING-W/AREA = (0.97)
EQUIPMENT-W/AREA = (0.487)
POLYGON = "205-10A-CLA-XY"

"206-10B-CLA" = SPACE
SHAPE = POLYGON
PEOPLE-SCHEDULE = "OCC-CLASS-ANNUAL"
LIGHTING-SCHEDUL = ("LITE-CLASS-ANNUAL")
EQUIP-SCHEDULE = ("EQP-CLASS-ANNUAL")
INF-SCHEDULE = "INF-ALL-ANNUAL"
LIGHTING-TYPE = (REC-FLUOR-NV)
INF-METHOD = AIR-CHANGE
PEOPLE-HG-LAT = 250
PEOPLE-HG-SENS = 250
NUMBER-OF-PEOPLE = 17
LIGHTING-W/AREA = (0.97)
EQUIPMENT-W/AREA = (0.487)
POLYGON = "206-10B-CLA-XY"

"207-110-CLAB" = SPACE
SHAPE = POLYGON
PEOPLE-SCHEDULE = "OCC-CLASS-ANNUAL"
LIGHTING-SCHEDUL = ("LITE-CLASS-ANNUAL")
EQUIP-SCHEDULE = ("EQP-CLASS-ANNUAL")
INF-SCHEDULE = "INF-ALL-ANNUAL"
LIGHTING-TYPE = (REC-FLUOR-NV)
INF-METHOD = AIR-CHANGE
PEOPLE-HG-LAT = 250
PEOPLE-HG-SENS = 250
NUMBER-OF-PEOPLE = 8
LIGHTING-W/AREA = (1.34)
EQUIPMENT-W/AREA = (0.752)
POLYGON = "207-110-CLAB-XY"

"208-127-CLAB" = SPACE
SHAPE = POLYGON
PEOPLE-SCHEDULE = "OCC-CLASS-ANNUAL"
LIGHTING-SCHEDUL = ("LITE-CLASS-ANNUAL")
EQUIP-SCHEDULE = ("EQP-CLASS-ANNUAL")
INF-SCHEDULE = "INF-ALL-ANNUAL"
LIGHTING-TYPE = (REC-FLUOR-NV)
INF-METHOD = AIR-CHANGE
PEOPLE-HG-LAT = 250
PEOPLE-HG-SENS = 250
NUMBER-OF-PEOPLE = 8
LIGHTING-W/AREA = (1.34)
EQUIPMENT-W/AREA = (0.752)
POLYGON = "208-127-CLAB-XY"

"209-112-CLAB" = SPACE
SHAPE = POLYGON
PEOPLE-SCHEDULE = "OCC-CLASS-ANNUAL"
LIGHTING-SCHEDULE = ("LITE-CLASS-ANNUAL")
EQUIP-SCHEDULE = ("EQP-CLASS-ANNUAL")
INF-SCHEDULE = "INF-ALL-ANNUAL"
LIGHTING-TYPE = (REC-FLUOR-NV)
INF-METHOD = AIR-CHANGE
PEOPLE-HG-LAT = 250
PEOPLE-HG-SENS = 250
NUMBER-OF-PEOPLE = 12
LIGHTING-W/AREA = (1.27)
EQUIPMENT-W/AREA = (0.71)
POLYGON = "Z09-112-CLAB-XY"

"Z10-125-CLAB" = SPACE
SHAPE = POLYGON
PEOPLE-SCHEDULE = "OCC-CLASS-ANNUAL"
LIGHTING-SCHEDULE = ("LITE-CLASS-ANNUAL")
EQUIP-SCHEDULE = ("EQP-CLASS-ANNUAL")
INF-SCHEDULE = "INF-ALL-ANNUAL"
LIGHTING-TYPE = (REC-FLUOR-NV)
INF-METHOD = AIR-CHANGE
PEOPLE-HG-LAT = 250
PEOPLE-HG-SENS = 250
NUMBER-OF-PEOPLE = 12
LIGHTING-W/AREA = (1.27)
EQUIPMENT-W/AREA = (0.71)
POLYGON = "Z10-125-CLAB-XY"

"Z11-130-OFC" = SPACE
SHAPE = POLYGON
PEOPLE-SCHEDULE = "OCC-OFC-ANNUAL"
LIGHTING-SCHEDULE = ("LITE-OFC-ANNUAL")
EQUIP-SCHEDULE = ("EQP-OFC-ANNUAL")
INF-SCHEDULE = "INF-ALL-ANNUAL"
LIGHTING-TYPE = (REC-FLUOR-NV)
INF-METHOD = AIR-CHANGE
AIR-CHANGES/HR = 0.2
PEOPLE-HG-LAT = 250
PEOPLE-HG-SENS = 250
NUMBER-OF-PEOPLE = 6
LIGHTING-W/AREA = (1.5)
EQUIPMENT-W/AREA = (1.462)
POLYGON = "Z11-130-OFC-XY"

"W01-Z11-130-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V1

"W02-Z11-130-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V2

"W03-Z11-130-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V3

"WIN01-W03-Z11-130-OFC" = WINDOW
GLASS-TYPE = "TYP-GLASS-1"
Y = 3.5
HEIGHT = 5
WIDTH = 2.5

"WIN02-W03-Z11-130-OFC" = WINDOW
GLASS-TYPE = "TYP-GLASS-1"
X = 4.5
Y = 3.5
HEIGHT = 5
WIDTH = 2.5

"W04-Z11-130-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V4

"W05-Z11-130-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V5

"WIN01-W05-Z11-130-OFC" = WINDOW
GLASS-TYPE = "TYP-GLASS-1"
X = 5
Y = 3.5
HEIGHT = 5
WIDTH = 2

"W06-Z11-130-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V6

"WIN01-W06-Z11-130-OFC" = WINDOW
GLASS-TYPE = "TYP-GLASS-1"
X = 0
Y = 3.5
HEIGHT = 5
WIDTH = 0.5
SETBACK = 0

"WIN02-W06-Z11-130-OFC" = WINDOW
GLASS-TYPE = "TYP-GLASS-1"
X = 2.5
Y = 3.5
HEIGHT = 5
WIDTH = 0.5
SETBACK = 0

"W07-Z11-130-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V7

"WIN01-W07-Z11-130-OFC" = WINDOW
GLASS-TYPE = "TYP-GLASS-1"
Y = 3.5
HEIGHT = 5
WIDTH = 2

"W08-Z11-130-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V8

"W09-Z11-130-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V9

"WIN01-W09-Z11-130-OFC" = WINDOW
GLASS-TYPE = "TYP-GLASS-1"
X = 3
Y = 3.5
HEIGHT = 5
WIDTH = 2.5

"W10-Z11-130-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V10

"WIN01-W10-Z11-130-OFC" = WINDOW
GLASS-TYPE = "TYP-GLASS-1"
X = 0.5
Y = 3.5
HEIGHT = 5
WIDTH = 2.5
SETBACK = 0

"W11-Z11-130-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V11

"W12-Z11-130-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V12

"W13-Z11-130-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V13

"WIN01-W13-Z11-130-OFC" = WINDOW
GLASS-TYPE = "TYP-GLASS-1"
X = 3
Y = 3.5
HEIGHT = 5
WIDTH = 2.5

"W14-Z11-130-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V14

"WIN01-W14-Z11-130-OFC" = WINDOW
GLASS-TYPE = "TYP-GLASS-1"
X = 0.5
Y = 3.5
HEIGHT = 5
WIDTH = 2.5
SETBACK = 0
"W15-Z11-130-OFC" = EXTERIOR-WALL
 CONSTRUCTION = "W-BRICK-CONS"
 LOCATION = SPACE-V15

"UF01-Z11-130-OFC" = UNDERGROUND-WALL
 CONSTRUCTION = "UF-TYP-CONS"
 U-EFFECTIVE = 0.0521
 LOCATION = BOTTOM

"Z12-126-OFC" = SPACE
 SHAPE = POLYGON
 PEOPLE-SCHEDULE = "OCC-OFC-ANNUAL"
 LIGHTING-SCHEDULE = ("LITE-OFC-ANNUAL")
 EQUIP-SCHEDULE = ("EQP-OFC-ANNUAL")
 INF-SCHEDULE = "INF-ALL-ANNUAL"
 LIGHTING-TYPE = (REC-FLUOR-NV)
 INF-METHOD = AIR-CHANGE
 AIR-CHANGES/HR = 0.2
 PEOPLE-HG-LAT = 250
 PEOPLE-HG-SENS = 250
 NUMBER-OF-PEOPLE = 1
 LIGHTING-W/AREA = (0.92)
 EQUIPMENT-W/AREA = (0.835)
 POLYGON = "Z12-126-OFC-XY"

"W01-Z12-126-OFC" = EXTERIOR-WALL
 CONSTRUCTION = "W-BRICK-CONS"
 LOCATION = SPACE-V1

"W02-Z12-126-OFC" = EXTERIOR-WALL
 CONSTRUCTION = "W-BRICK-CONS"
 LOCATION = SPACE-V2

"W03-Z12-126-OFC" = EXTERIOR-WALL
 CONSTRUCTION = "W-BRICK-CONS"
 LOCATION = SPACE-V3

"W04-Z12-126-OFC" = EXTERIOR-WALL
 CONSTRUCTION = "W-BRICK-CONS"
 LOCATION = SPACE-V4

"WIN01-W04-Z12-126-OFC" = WINDOW
 GLASS-TYPE = "TYP-GLASS-1"
 X = 3
 Y = 3.5
 HEIGHT = 5
 WIDTH = 5

"W05-Z12-126-OFC" = EXTERIOR-WALL
 CONSTRUCTION = "W-BRICK-CONS"
 LOCATION = SPACE-V5

"W06-Z12-126-OFC" = EXTERIOR-WALL
 CONSTRUCTION = "W-BRICK-CONS"
 LOCATION = SPACE-V6
"UF01-Z12-126-OFC" = UNDERGROUND-WALL
CONSTRUCTION = "UF-TYP-CONS"
U-EFFECTIVE = 0.0987
LOCATION = BOTTOM

"Z13-120-OFC" = SPACE
SHAPE = POLYGON
PEOPLE-SCHEDULE = "OCC-OFC-ANNUAL"
LIGHTING-SCHEDULE = ("LITE-OFC-ANNUAL")
EQUIP-SCHEDULE = ("EQP-OFC-ANNUAL")
INF-SCHEDULE = "INF-ALL-ANNUAL"
LIGHTING-TYPE = (REC-FLUOR-NV)
INF-METHOD = AIR-CHANGE
AIR-CHANGES/HR = 0.2
PEOPLE-HG-LAT = 250
PEOPLE-HG-SENS = 250
NUMBER-OF-PEOPLE = 5
LIGHTING-W/AREA = (1.32)
EQUIPMENT-W/AREA = (0.975)
POLYGON = "Z13-120-OFC-XY"

"W01-Z13-120-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V2

"W02-Z13-120-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V3

"W03-Z13-120-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V4

"WIN01-W03-Z13-120-OFC" = WINDOW
GLASS-TYPE = "TYP-GLASS-1"
X = 4
Y = 3.5
HEIGHT = 5
WIDTH = 2.5

"W04-Z13-120-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V5

"WIN01-W04-Z13-120-OFC" = WINDOW
GLASS-TYPE = "TYP-GLASS-1"
X = 0.5
Y = 3.5
HEIGHT = 5
WIDTH = 2.5
SETBACK = 0

"W05-Z13-120-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V6

"W06-Z13-120-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V7

"W07-Z13-120-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V8

"W08-Z13-120-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V9

"W09-Z13-120-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V10

"WIN01-W09-Z13-120-OFC" = WINDOW
GLASS-TYPE = "TYP-GLASS-1"
X = 1
Y = 3.5
HEIGHT = 5
WIDTH = 2.5

"WIN02-W09-Z13-120-OFC" = WINDOW
GLASS-TYPE = "TYP-GLASS-1"
X = 5.5
Y = 3.5
HEIGHT = 5
WIDTH = 2.5

"W10-Z13-120-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V11

"W11-Z13-120-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V12

"W12-Z13-120-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V13

"W13-Z13-120-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V14

"WIN01-W13-Z13-120-OFC" = WINDOW
GLASS-TYPE = "TYP-GLASS-1"
Y = 3.5
HEIGHT = 5
WIDTH = 2.5

"WIN02-W13-Z13-120-OFC" = WINDOW
GLASS-TYPE = "TYP-GLASS-1"
X = 5.5
Y = 3.5
HEIGHT = 5
WIDTH = 2.5
"W14-Z13-120-OFC" = EXTERIOR-WALL
 CONSTRUCTION = "W-BRICK-CONS"
 LOCATION = SPACE-V15

"W15-Z13-120-OFC" = EXTERIOR-WALL
 CONSTRUCTION = "W-BRICK-CONS"
 LOCATION = SPACE-V16

"UF01-Z13-120-OFC" = UNDERGROUND-WALL
 CONSTRUCTION = "UF-TYP-CONS"
 U-EFFECTIVE = 0.0521
 LOCATION = BOTTOM

"Z14-199-DATA" = SPACE
 SHAPE = POLYGON
 PEOPLE-SCHEDULE = "OCC-MECH-ANNUAL"
 LIGHTING-SCHEDULE = ("LITE-MECH-ANNUAL")
 EQUIP-SCHEDULE = ("EQP-MECH-ANNUAL")
 INF-SCHEDULE = "INF-ALL-ANNUAL"
 LIGHTING-TYPE = (REC-FLUOR-NV)
 INF-METHOD = AIR-CHANGE
 PEOPLE-HG-LAT = 250
 PEOPLE-HG-SENS = 250
 NUMBER-OF-PEOPLE = 1
 LIGHTING-W/AREA = (1.51)
 EQUIPMENT-W/AREA = (4.136)
 POLYGON = "Z14-199-DATA-XY"

"Floor-2" = FLOOR
 Z = 14
 POLYGON = "Floor-2-XY"
 SHAPE = POLYGON
 FLOOR-HEIGHT = 18
 SPACE-HEIGHT = 18
 C-DIAGRAM-DATA = "Bldg Envelope & Loads 1 Diag Data"

"Z15-293-COR" = SPACE
 SHAPE = POLYGON
 PEOPLE-SCHEDULE = "OCC-COR-ANNUAL"
 LIGHTING-SCHEDULE = ("LITE-COR-ANNUAL")
 EQUIP-SCHEDULE = ("EQP-COR-ANNUAL")
 INF-SCHEDULE = "INF-ALL-ANNUAL"
 LIGHTING-TYPE = (REC-FLUOR-NV)
 INF-METHOD = AIR-CHANGE
 AIR-CHANGES/HR = 0.2
 PEOPLE-HG-LAT = 250
 PEOPLE-HG-SENS = 250
 NUMBER-OF-PEOPLE = 2
 LIGHTING-W/AREA = (0.66)
 EQUIPMENT-W/AREA = (0.07)
 POLYGON = "Z15-293-COR-XY"

"W01-Z15-293-COR" = EXTERIOR-WALL
 CONSTRUCTION = "W-BRICK-CONS"
 WIDTH = 14
 LOCATION = SPACE-V1
"W03-Z15-293-COR" = EXTERIOR-WALL
 CONSTRUCTION = "W-BRICK-CONS"
 LOCATION = SPACE-V8

"WIN01-W03-Z15-293-COR" = WINDOW
 GLASS-TYPE = "TYP-GLASS-N"
 X = 59
 Y = 3.5
 HEIGHT = 5
 WIDTH = 2.5
 SETBACK = 0

"WIN02-W03-Z15-293-COR" = WINDOW
 GLASS-TYPE = "TYP-GLASS-N"
 X = 63.5
 Y = 3.5
 HEIGHT = 5
 WIDTH = 2.5
 SETBACK = 0

"W04-Z15-293-COR" = EXTERIOR-WALL
 CONSTRUCTION = "W-BRICK-CONS"
 LOCATION = SPACE-V9

"W05-Z15-293-COR" = EXTERIOR-WALL
 CONSTRUCTION = "W-BRICK-CONS"
 LOCATION = SPACE-V10

"R01-Z15-293-COR" = EXTERIOR-WALL
 CONSTRUCTION = "R-TYP-CONS"
 LOCATION = TOP

"Z16-295-RR" = SPACE
 SHAPE = POLYGON
 PEOPLE-SCHEDULE = "OCC-COR-ANNUAL"
 LIGHTING-SCHEDULE = ("LITE-COR-ANNUAL")
 EQUIP-SCHEDULE = ("EQP-COR-ANNUAL")
 INF-SCHEDULE = "INF-ALL-ANNUAL"
 LIGHTING-TYPE = (REC-FLUOR-NV)
 INF-METHOD = AIR-CHANGE
 PEOPLE-HG-LAT = 250
 PEOPLE-HG-SENS = 250
 NUMBER-OF-PEOPLE = 1
 LIGHTING-W/AREA = (1.08)
 EQUIPMENT-W/AREA = (0.07)
 POLYGON = "Z16-295-RR-XY"

"R01-Z16-295-RR" = EXTERIOR-WALL
 CONSTRUCTION = "R-TYP-CONS"
 LOCATION = TOP

"Z17-299-DATA" = SPACE
 SHAPE = POLYGON
 PEOPLE-SCHEDULE = "OCC-MECH-ANNUAL"
 LIGHTING-SCHEDULE = ("LITE-MECH-ANNUAL")
 EQUIP-SCHEDULE = ("EQP-MECH-ANNUAL")
INF-SCHEDULE = "INF-ALL-ANNUAL"
LIGHTING-TYPE = (REC-FLUOR-NV)
INF-METHOD = AIR-CHANGE
PEOPLE-HG-LAT = 250
PEOPLE-HG-SENS = 250
NUMBER-OF-PEOPLE = 1
LIGHTING-W/AREA = (1.51)
EQUIPMENT-W/AREA = (4.136)
POLYGON = "217-299-DATA-XY"

"R01-Z17-299-DATA" = EXTERIOR-WALL
CONSTRUCTION = "R-TYP-CONS"
LOCATION = TOP

"Z18-209-OFC" = SPACE
SHAPE = POLYGON
PEOPLE-SCHEDULE = "OCC-OFC-ANNUAL"
LIGHTING-SCHEDULE = ("LITE-OFC-ANNUAL")
EQUIP-SCHEDULE = ("EQP-OFC-ANNUAL")
INF-SCHEDULE = "INF-ALL-ANNUAL"
LIGHTING-TYPE = (REC-FLUOR-NV)
INF-METHOD = AIR-CHANGE
AIR-CHANGES/HR = 0.2
PEOPLE-HG-LAT = 250
PEOPLE-HG-SENS = 250
NUMBER-OF-PEOPLE = 3
LIGHTING-W/AREA = (1.57)
EQUIPMENT-W/AREA = (1.601)
POLYGON = "218-209-OFC-XY"

"R01-Z18-209-OFC" = EXTERIOR-WALL
CONSTRUCTION = "R-TYP-CONS"
LOCATION = TOP

"Z19-291-COR" = SPACE
SHAPE = POLYGON
PEOPLE-SCHEDULE = "OCC-COR-ANNUAL"
LIGHTING-SCHEDULE = ("LITE-COR-ANNUAL")
EQUIP-SCHEDULE = ("EQP-COR-ANNUAL")
INF-SCHEDULE = "INF-ALL-ANNUAL"
LIGHTING-TYPE = (REC-FLUOR-NV)
INF-METHOD = AIR-CHANGE
PEOPLE-HG-LAT = 250
PEOPLE-HG-SENS = 250
NUMBER-OF-PEOPLE = 3
LIGHTING-W/AREA = (0.75)
EQUIPMENT-W/AREA = (0.07)
POLYGON = "219-291-COR-XY"

"R01-Z19-291-COR" = EXTERIOR-WALL
CONSTRUCTION = "R-TYP-CONS"
LOCATION = TOP

"Z20-206-CLAB" = SPACE
SHAPE = POLYGON
PEOPLE-SCHEDULE = "OCC-CLASS-ANNUAL"
LIGHTING-SCHEDULE = ("LITE-CLASS-ANNUAL")
EQUIP-SCHEDULE = ("EQP-CLASS-ANNUAL")
INF-SCHEDULE = "INF-ALL-ANNUAL"
LIGHTING-TYPE = (REC-FLUOR-NV)
INF-METHOD = AIR-CHANGE
PEOPLE-HG-LAT = 250
PEOPLE-HG-SENS = 250
NUMBER-OF-PEOPLE = 8
LIGHTING-W/AREA = (1.34)
EQUIPMENT-W/AREA = (0.446)
POLYGON = "Z20-206-CLAB-XY"
...
"R01-Z20-206-CLAB" = EXTERIOR-WALL
CONSTRUCTION = "R-TYP-CONS"
LOCATION = TOP
...
"Z21-212-LEARN" = SPACE
SHAPE = POLYGON
PEOPLE-SCHEDULE = "OCC-CLASS-ANNUAL"
LIGHTING-SCHEDUL = ("LITE-CLASS-ANNUAL")
EQUIP-SCHEDULE = ("EQP-CLASS-ANNUAL")
INF-SCHEDULE = "INF-ALL-ANNUAL"
LIGHTING-TYPE = (REC-FLUOR-NV)
INF-METHOD = AIR-CHANGE
PEOPLE-HG-LAT = 250
PEOPLE-HG-SENS = 250
NUMBER-OF-PEOPLE = 8
LIGHTING-W/AREA = (1.34)
EQUIPMENT-W/AREA = (1.518)
POLYGON = "Z21-212-LEARN-XY"
...
"R01-Z21-212-LEARN" = EXTERIOR-WALL
CONSTRUCTION = "R-TYP-CONS"
LOCATION = TOP
...
"Z22-208-CLAB" = SPACE
SHAPE = POLYGON
PEOPLE-SCHEDULE = "OCC-CLASS-ANNUAL"
LIGHTING-SCHEDUL = ("LITE-CLASS-ANNUAL")
EQUIP-SCHEDULE = ("EQP-CLASS-ANNUAL")
INF-SCHEDULE = "INF-ALL-ANNUAL"
LIGHTING-TYPE = (REC-FLUOR-NV)
INF-METHOD = AIR-CHANGE
PEOPLE-HG-LAT = 250
PEOPLE-HG-SENS = 250
NUMBER-OF-PEOPLE = 16
LIGHTING-W/AREA = (1.27)
EQUIPMENT-W/AREA = (0.71)
POLYGON = "Z22-208-CLAB-XY"
...
"R01-Z22-208-CLAB" = EXTERIOR-WALL
CONSTRUCTION = "R-TYP-CONS"
LOCATION = TOP
...
"Z23-212-LEARN" = SPACE
SHAPE = POLYGON
PEOPLE-SCHEDULE = "OCC-CLASS-ANNUAL"
LIGHTING-SCHEDUL = ("LITE-CLASS-ANNUAL")
EQUIP-SCHEDULE = ("EQP-CLASS-ANNUAL")
INF-SCHEDULE = "INF-ALL-ANNUAL"
LIGHTING-TYPE = (REC-FLUOR-NV)
INF-METHOD = AIR-CHANGE
PEOPLE-HG-LAT = 250
PEOPLE-HG-SENS = 250
NUMBER-OF-PEOPLE = 10
LIGHTING-W/AREA = (1.33)
EQUIPMENT-W/AREA = (1.518)
POLYGON = "223-212-LEARN-XY"

"R01-Z23-212-LEARN" = EXTERIOR-WALL
CONSTRUCTION = "R-TYP-CONS"
LOCATION = TOP

"Z24-210-OFC" = SPACE
SHAPE = POLYGON
PEOPLE-SCHEDULE = "OCC-OFC-ANNUAL"
LIGHTING-SCHEDUL = ("LITE-OFC-ANNUAL")
EQUIP-SCHEDULE = ("EQP-OFC-ANNUAL")
INF-SCHEDULE = "INF-ALL-ANNUAL"
LIGHTING-TYPE = (REC-FLUOR-NV)
INF-METHOD = AIR-CHANGE
PEOPLE-HG-LAT = 250
PEOPLE-HG-SENS = 250
NUMBER-OF-PEOPLE = 3
LIGHTING-W/AREA = (1.13)
EQUIPMENT-W/AREA = (1.532)
POLYGON = "224-210-OFC-XY"

"R01-Z24-210-OFC" = EXTERIOR-WALL
CONSTRUCTION = "R-TYP-CONS"
LOCATION = TOP

"Z25-212-MEDIA" = SPACE
SHAPE = POLYGON
PEOPLE-SCHEDULE = "OCC-CLASS-ANNUAL"
LIGHTING-SCHEDUL = ("LITE-CLASS-ANNUAL")
EQUIP-SCHEDULE = ("EQP-CLASS-ANNUAL")
INF-SCHEDULE = "INF-ALL-ANNUAL"
LIGHTING-TYPE = (REC-FLUOR-NV)
INF-METHOD = AIR-CHANGE
PEOPLE-HG-LAT = 250
PEOPLE-HG-SENS = 250
NUMBER-OF-PEOPLE = 1
LIGHTING-W/AREA = (1.04)
EQUIPMENT-W/AREA = (2.117)
POLYGON = "225-212-MEDIA-XY"

"R01-Z25-212-MEDIA" = EXTERIOR-WALL
CONSTRUCTION = "R-TYP-CONS"
LOCATION = TOP

"Z26-211-FUND" = SPACE
SHAPE = POLYGON
PEOPLE-SCHEDULE = "OCC-CLASS-ANNUAL"
LIGHTING-SCHEDUL = ("LITE-CLASS-ANNUAL")
EQUIP-SCHEDULE = ("EQP-CLASS-ANNUAL")
INF-SCHEDULE = "INF-ALL-ANNUAL"
LIGHTING-TYPE = (REC-FLUOR-NV)
INF-METHOD = AIR-CHANGE
AIR-CHANGES/HR = 0.2
PEOPLE-HG-LAT = 250
PEOPLE-HG-SENS = 250
NUMBER-OF-PEOPLE = 20
LIGHTING-W/AREA = (1.49)
EQUIPMENT-W/AREA = (1.309)
POLYGON = "226-211-FUND-XY"

"W01-226-211-FUND" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V2

"WIN01-W01-226-211-FUND" = WINDOW
GLASS-TYPE = "TYP-GLASS-1"
X = 6
Y = 3.5
HEIGHT = 3
WIDTH = 2.5
SETBACK = 0

"WIN03-W01-226-211-FUND" = WINDOW
GLASS-TYPE = "TYP-GLASS-1"
X = 27
Y = 3.5
HEIGHT = 3
WIDTH = 2.5
SETBACK = 0

"WIN02-W01-226-211-FUND" = WINDOW
GLASS-TYPE = "TYP-GLASS-1"
X = 10.5
Y = 3.5
HEIGHT = 3
WIDTH = 2.5
SETBACK = 0

"WIN04-W01-226-211-FUND" = WINDOW
GLASS-TYPE = "TYP-GLASS-1"
X = 31.5
Y = 3.5
HEIGHT = 3
WIDTH = 2.5
SETBACK = 0

"W02-226-211-FUND" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V3

"W03-226-211-FUND" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V4

"R01-226-211-FUND" = EXTERIOR-WALL
CONSTRUCTION = "R-TYP-CONS"
LOCATION = TOP

"Z27-215-BEDLAB" = SPACE
SHAPE = POLYGON
PEOPLE-SCHEDULE = "OCC-CLASS-ANNUAL"
LIGHTING-SCHEDULE = ("LITE-CLASS-ANNUAL")
EQUIP-SCHEDULE = ("EQP-CLASS-ANNUAL")
INF-SCHEDULE = "INF-ALL-ANNUAL"
LIGHTING-TYPE = (REC-FLUOR-NV)
INF-METHOD = AIR-CHANGE
AIR-CHANGES/HR = 0.2
PEOPLE-HG-LAT = 250
PEOPLE-HG-SENS = 250
NUMBER-OF-PEOPLE = 20
LIGHTING-W/AREA = (1.88)
EQUIPMENT-W/AREA = (1.448)
POLYGON = "Z27-215-BEDLAB-XY"

"W01-Z27-215-BEDLAB" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V2

"WIN01-W01-Z27-215-BEDLAB" = WINDOW
GLASS-TYPE = "TYP-GLASS-1"
X = 15
Y = 3.5
HEIGHT = 3
WIDTH = 2.5
SETBACK = 0

"WIN02-W01-Z27-215-BEDLAB" = WINDOW
GLASS-TYPE = "TYP-GLASS-1"
X = 20.5
Y = 3.5
HEIGHT = 3
WIDTH = 2.5
SETBACK = 0

"R01-Z27-215-BEDLAB" = EXTERIOR-WALL
CONSTRUCTION = "R-TYP-CONS"
LOCATION = TOP

"Z28-217-LOUNGE" = SPACE
SHAPE = POLYGON
PEOPLE-SCHEDULE = "OCC-CLASS-ANNUAL"
LIGHTING-SCHEDULE = ("LITE-CLASS-ANNUAL")
EQUIP-SCHEDULE = ("EQP-CLASS-ANNUAL")
INF-SCHEDULE = "INF-ALL-ANNUAL"
LIGHTING-TYPE = (REC-FLUOR-NV)
INF-METHOD = AIR-CHANGE
AIR-CHANGES/HR = 0.2
PEOPLE-HG-LAT = 250
PEOPLE-HG-SENS = 250
NUMBER-OF-PEOPLE = 6
LIGHTING-W/AREA = (1.83)
EQUIPMENT-W/AREA = (1.156)
DAYLIGHTING = NO
LIGHT-REF-POINT1 = (80, 7, 9)
LIGHT-REF-POINT2 = (105, 7, 9)
ZONE-FRACTION1 = 0.5
ZONE-FRACTION2 = 0.5
VIEW-AZIMUTH = 180
POLYGON = "228-217-LOUNGE-XY"

"W01-Z28-217-LOUNGE" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V1

"WIN01-W01-Z28-217-LOUNGE" = WINDOW
GLASS-TYPE = "TYP-GLASS-1"
X = 0
Y = 3.5
HEIGHT = 5
WIDTH = 2.5
SETBACK = 0

"W02-Z28-217-LOUNGE" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V2

"WIN01-W02-Z28-217-LOUNGE" = WINDOW
GLASS-TYPE = "TYP-GLASS-1"
X = 0.5
Y = 3.5
HEIGHT = 5
WIDTH = 2.5

"W03-Z28-217-LOUNGE" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V3

"W04-Z28-217-LOUNGE" = EXTERIOR-WALL
Z = 3
HEIGHT = 15
LOCATION = SPACE-V4

"WIN02-W01-Z28-217-LOUNGE" = WINDOW
GLASS-TYPE = "TYP-GLASS-1"
X = 6
Y = 0
HEIGHT = 9
WIDTH = 26
SETBACK = 0
OVERHANG-B = -1.5
OVERHANG-W = 29
OVERHANG-D = 0

"W05-Z28-217-LOUNGE" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
Z = 3
HEIGHT = 15
LOCATION = SPACE-V5
"WIN01-W05-Z28-217-LOUNGE" = WINDOW
 GLASS-TYPE = "TYP-GLASS-1"
 Y = 0
 HEIGHT = 9
 WIDTH = 14
 SETBACK = 0
 OVERHANG-A = 2
 OVERHANG-B = -1.5
 OVERHANG-W = 17
 OVERHANG-D = 0

"R01-Z28-217-LOUNGE" = EXTERIOR-WALL
 CONSTRUCTION = "R-TYP-CONS"
 LOCATION = TOP

"W04A-Z28-217-LOUNGE" = EXTERIOR-WALL
 CONSTRUCTION = "W-SPANDREL-CONS"
 HEIGHT = 3
 LOCATION = SPACE-V4

"W05A-Z28-217-LOUNGE" = EXTERIOR-WALL
 CONSTRUCTION = "W-SPANDREL-CONS"
 HEIGHT = 3
 LOCATION = SPACE-V5

"IW01-Z28-217-LOUNGE" = INTERIOR-WALL
 NEXT-TO = "Z27-215-BEDLAB"
 CONSTRUCTION = "IW-TYP-CONS"
 LOCATION = SPACE-V6

"IW02-Z28-217-LOUNGE" = INTERIOR-WALL
 NEXT-TO = "Z29-223-OFC"
 CONSTRUCTION = "IW-TYP-CONS"
 LOCATION = SPACE-V7

"Z29-223-OFC" = SPACE
 SHAPE = POLYGON
 PEOPLE-SCHEDULE = "OCC-OFC-ANNUAL"
 LIGHTING-SCHEDULE = ("LITE-OFC-ANNUAL")
 EQUIP-SCHEDULE = ("EQP-OFC-ANNUAL")
 INF-SCHEDULE = "INF-ALL-ANNUAL"
 LIGHTING-TYPE = (REC-FLUOR-NV)
 INF-METHOD = AIR-CHANGE
 AIR-CHANGES/HR = 0.2
 PEOPLE-HG-LAT = 250
 PEOPLE-HG-SENS = 250
 NUMBER-OF-PEOPLE = 6
 LIGHTING-W/AREA = (1.48)
 EQUIPMENT-W/AREA = (1.337)
 POLYGON = "Z29-223-OFC-XY"

"W06-Z229-223-OFC" = EXTERIOR-WALL
 CONSTRUCTION = "W-BRICK-CONS"
 LOCATION = SPACE-V6

"W07-Z229-223-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V7

"W09-Z29-223-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V9

"WIN01-W08-Z29-223-OFC" = WINDOW
GLASS-TYPE = "TYP-GLASS-1"
X = 0
Y = 3.5
HEIGHT = 5
WIDTH = 2.5
SETBACK = 0

"WIN02-W08-Z29-223-OFC" = WINDOW
GLASS-TYPE = "TYP-GLASS-1"
X = 4.5
Y = 3.5
HEIGHT = 5
WIDTH = 2.5
SETBACK = 0

"W09-Z29-223-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V9

"W10-Z29-223-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V10

"WIN01-W10-Z29-223-OFC" = WINDOW
GLASS-TYPE = "TYP-GLASS-1"
X = 5
Y = 3.5
HEIGHT = 5
WIDTH = 2
SETBACK = 0

"W11-Z29-223-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V11

"WIN01-W11-Z29-223-OFC" = WINDOW
GLASS-TYPE = "TYP-GLASS-1"
Y = 3.5
HEIGHT = 5
WIDTH = 0.5

"WIN02-W11-Z29-223-OFC" = WINDOW
GLASS-TYPE = "TYP-GLASS-1"
X = 2.5
Y = 3.5
HEIGHT = 5
WIDTH = 0.5

"W12-Z29-223-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V12

"WIN01-W12-Z29-223-OFC" = WINDOW
GLASS-TYPE = "TYP-GLASS-1"
Y = 3.5
HEIGHT = 5
WIDTH = 2

"W13-Z29-223-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V13

"W14-Z29-223-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
LOCATION = SPACE-V14

"R01-Z29-223-OFC" = EXTERIOR-WALL
CONSTRUCTION = "R-TYP-CONS"
LOCATION = TOP

"W01-Z29-223-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
Y = -0.02
Z = 11
HEIGHT = 7
LOCATION = SPACE-V1

"W02-Z29-223-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
Y = -0.02
Z = 11
HEIGHT = 7
LOCATION = SPACE-V2

"W03-Z29-223-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
Y = -0.02
Z = 11
HEIGHT = 7
LOCATION = SPACE-V3

"W04-Z29-223-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
Y = -0.02
Z = 11
HEIGHT = 7
LOCATION = SPACE-V4

"W05-Z29-223-OFC" = EXTERIOR-WALL
CONSTRUCTION = "W-BRICK-CONS"
Y = -0.02
Z = 11
HEIGHT = 7
LOCATION = SPACE-V5

"IW01-Z29-223-OFC" = INTERIOR-WALL
NEXT-TO = "Z01-191-COR"
CONSTRUCTION = "IW-TYP-CONS"
HEIGHT = 11
LOCATION = SPACE-V1

"IW02-Z29-223-OFC" = INTERIOR-WALL
NEXT-TO = "Z01-191-COR"
CONSTRUCTION = "IW-TYP-CONS"
HEIGHT = 11
LOCATION = SPACE-V2

"IWIN01-IW02-Z29-223-OFC" = WINDOW
GLASS-TYPE = "TYP-GLASS-1"
Y = 3.5
HEIGHT = 5
WIDTH = 2.5

"IW03-Z29-223-OFC" = INTERIOR-WALL
NEXT-TO = "Z01-191-COR"
CONSTRUCTION = "IW-TYP-CONS"
HEIGHT = 11
LOCATION = SPACE-V3

"IW04-Z29-223-OFC" = INTERIOR-WALL
NEXT-TO = "Z01-191-COR"
CONSTRUCTION = "IW-TYP-CONS"
HEIGHT = 11
LOCATION = SPACE-V4

"IWIN01-IW04-Z29-223-OFC" = WINDOW
GLASS-TYPE = "TYP-GLASS-1"
Y = 3.5
HEIGHT = 5
WIDTH = 2.5

"IW05-Z29-223-OFC" = INTERIOR-WALL
NEXT-TO = "Z01-191-COR"
CONSTRUCTION = "IW-TYP-CONS"
HEIGHT = 11
LOCATION = SPACE-V5

$ ***
$ ** **
$ ** Performance Curves **
$ ** **
$ ***

$ ***
$ ** **
$ ** Electric & Fuel Meters **
$ ** **
$ ***
$ Electric Meters

"Submeter 1 - Exterior Lighting" = ELEC-METER
 TYPE = SUB-METER
 EXTERIOR-POWER = (0.672)
 EXTERIOR-SCH = ("EXT-LIGHTS-SCH")

"EM1" = ELEC-METER
 TYPE = UTILITY
 BLDG/SUB-METERS = ("Submeter 1 - Exterior Lighting",
 "Submeter 2 - Elevator")

"Submeter 2 - Elevator" = ELEC-METER
 TYPE = SUB-METER
 INTERIOR-POWER = (20)
 INTERIOR-SCH = ("SCHOOL-SECON ELEV")

$ Fuel Meters

$ Master Meters

"MASTER-METERS 1" = MASTER-METERS
 MSTR-ELEC-METER = "EM1"
 MSTR-FUEL-METER = "FM1"

$ HVAC Circulation Loops / Plant Equipment

$ Pumps

$ Heat Exchangers

$ Circulation Loops
"DHW LOOP" = CIRCULATION-LOOP
 TYPE = DHW
 PROCESS-FLOW = (0.69)
 PROCESS-SCH = ("DHW-SCH")

Chillers

Boilers

Domestic Water Heaters

"DHW-1" = DW-HEATER
 TYPE = GAS
 LOCATION = ZONE
 ZONE-NAME = "Z01-191-COR_C"
 DHW-LOOP = "DHW LOOP"

Heat Rejection

Tower Free Cooling

Photovoltaic Modules

Electric Generators
$ ---
$ Thermal Storage
$ ---

$ ---
$ Ground Loop Heat Exchangers
$ ---

$ ---
$ Compliance DHW (residential dwelling units)
$ ---

$ **
$ ** **
$ ** Steam & Chilled Water Meters **
$ ** **
$ **

$ ---
$ Steam Meters
$ ---

$ ---
$ Chilled Water Meters
$ ---

$ **
$ ** **
$ ** HVAC Systems / Zones **
$ ** **
$ **

SET-DEFAULT FOR SYSTEM
 TYPE = PSZ
 ECONO-LIMIT-T = 70
 COOLING-EIR = 0.2433
...

SET-DEFAULT FOR ZONE
 TYPE = CONDITIONED
 DESIGN-COOL-T = 75
...

"AC-1" = SYSTEM
 TYPE = PSZ
 HEAT-SOURCE = NONE
 COOLING-SCHEDULE = "CLG_AVAIL-ALL-ANNUAL"
SUPPLY-FLOW = 800
MIN-OUTSIDE-AIR = 0
FAN-SCHEDULE = "FAN-SCH-ANNUAL"
SUPPLY-KW/FLOW = 0.000587
NIGHT-CYCLE-CTRL = CYCLE-ON-ANY
COOLING-CAPACITY = 23800
COOLING-EIR = 0.36
COOL-SH-CAP = 20100
CRANKCASE-HEAT = 0
CONTROL-ZONE = "214-199-DATA_C"

"214-199-DATA_C" = ZONE
 TYPE = CONDITIONED
 HEAT-TEMP-SCH = "HTG-STO-ANNUAL"
 COOL-TEMP-SCH = "CLG-STO-ANNUAL"
 SPACE = "214-199-DATA"

"AC-2" = SYSTEM
 TYPE = PSZ
 HEAT-SOURCE = NONE
 COOLING-SCHEDULE = "CLG_AVAIL-ALL-ANNUAL"
 SUPPLY-FLOW = 800
 MIN-OUTSIDE-AIR = 0
 FAN-SCHEDULE = "FAN-SCH-ANNUAL"
 SUPPLY-KW/FLOW = 0.000587
 NIGHT-CYCLE-CTRL = CYCLE-ON-ANY
 COOLING-CAPACITY = 23800
 COOLING-EIR = 0.36
 COOL-SH-CAP = 20100
 CRANKCASE-HEAT = 0
 CONTROL-ZONE = "217-299-DATA_C"

"217-299-DATA_C" = ZONE
 TYPE = CONDITIONED
 HEAT-TEMP-SCH = "HTG-STO-ANNUAL"
 COOL-TEMP-SCH = "CLG-STO-ANNUAL"
 SPACE = "217-299-DATA"

"Z01-PSZ-DUMMY" = SYSTEM
 TYPE = PSZ
 HEAT-SOURCE = FURNACE
 ZONE-HEAT-SOURCE = NONE
 HEATING-SCHEDULE = "HTG_AVAIL-ALL-ANNUAL"
 COOLING-SCHEDULE = "CLG_AVAIL-ALL-ANNUAL"
 RETURN-FLOW = 1102
 OA-CONTROL = FIXED
 FAN-SCHEDULE = "FAN-SCH-ANNUAL"
 SUPPLY-KW/FLOW = 0.000787
 RETURN-KW/FLOW = 0.000792
 NIGHT-CYCLE-CTRL = CYCLE-ON-ANY
 COOLING-CAPACITY = 52485
 HEATING-CAPACITY = -84870
 FURNACE-AUX = 0
 FURNACE-HIR = 1.25
 CONTROL-ZONE = "Z01-191-COR_C"

"Z01-191-COR_C" = ZONE
TYPE = CONDITIONED
OUTSIDE-AIR-FLOW = 357
HEAT-TEMP-SCH = "HTG-COR-ANNUAL"
COOL-TEMP-SCH = "CLG-COR-ANNUAL"
SPACE = "Z01-191-COR"

"Z02-PSZ-DUMMY" = SYSTEM
TYPE = PSZ
HEAT-SOURCE = FURNACE
ZONE-HEAT-SOURCE = NONE
HEATING-SCHEDULE = "HTG_AVAIL-ALL-ANNUAL"
COOLING-SCHEDULE = "CLG_AVAIL-ALL-ANNUAL"
RETURN-FLOW = 57
FAN-SCHEDULE = "FAN-SCH-ANNUAL"
SUPPLY-KW/FLOW = 0.001033
RETURN-KW/FLOW = 0.001048
NIGHT-CYCLE-CTRL = CYCLE-ON-ANY
COOLING-CAPACITY = 2951
HEATING-CAPACITY = -4824
FURNACE-AUX = 0
FURNACE-HIR = 1.25
CONTROL-ZONE = "Z02-195-RR_C"

"Z02-195-RR_C" = ZONE
TYPE = CONDITIONED
OUTSIDE-AIR-FLOW = 25
HEAT-TEMP-SCH = "HTG-COR-ANNUAL"
COOL-TEMP-SCH = "CLG-COR-ANNUAL"
SPACE = "Z02-195-RR"

"Z03-PSZ-DUMMY" = SYSTEM
TYPE = PSZ
HEAT-SOURCE = FURNACE
ZONE-HEAT-SOURCE = NONE
HEATING-SCHEDULE = "HTG_AVAIL-ALL-ANNUAL"
COOLING-SCHEDULE = "CLG_AVAIL-ALL-ANNUAL"
RETURN-FLOW = 56
FAN-SCHEDULE = "FAN-SCH-ANNUAL"
SUPPLY-KW/FLOW = 0.001035
RETURN-KW/FLOW = 0.001051
NIGHT-CYCLE-CTRL = CYCLE-ON-ANY
COOLING-CAPACITY = 2895
HEATING-CAPACITY = -4795
FURNACE-AUX = 0
FURNACE-HIR = 1.25
CONTROL-ZONE = "Z03-199-STO_C"

"Z03-199-STO_C" = ZONE
TYPE = CONDITIONED
OUTSIDE-AIR-FLOW = 25
HEAT-TEMP-SCH = "HTG-STO-ANNUAL"
COOL-TEMP-SCH = "CLG-STO-ANNUAL"
SPACE = "Z03-199-STO"

"Z04-PSZ-DUMMY" = SYSTEM
TYPE = PSZ
HEAT-SOURCE = FURNACE
ZONE-HEAT-SOURCE = NONE
HEATING-SCHEDULE = "HTG_AVAIL-ALL-ANNUAL"
COOLING-SCHEDULE = "CLG_AVAIL-ALL-ANNUAL"
RETURN-FLOW = 418
FAN-SCHEDULE = "FAN-SCH-ANNUAL"
SUPPLY-KW/FLOW = 0.000837
RETURN-KW/FLOW = 0.000844
NIGHT-CYCLE-CTRL = CYCLE-ON-ANY
COOLING-CAPACITY = 21372
HEATING-CAPACITY = -35664
FURNACE-AUX = 0
FURNACE-HIR = 1.25
CONTROL-ZONE = "Z04-191-COR_C"

"Z04-191-COR_C" = ZONE
 TYPE = CONDITIONED
 OUTSIDE-AIR-FLOW = 180
 HEAT-TEMP-SCH = "HTG-COR-ANNUAL"
 COOL-TEMP-SCH = "CLG-COR-ANNUAL"
 SPACE = "Z04-191-COR"

"Z05-PSZ-DUMMY" = SYSTEM
 TYPE = PSZ
 HEAT-SOURCE = FURNACE
 ZONE-HEAT-SOURCE = NONE
 HEATING-SCHEDULE = "HTG_AVAIL-ALL-ANNUAL"
 COOLING-SCHEDULE = "CLG_AVAIL-ALL-ANNUAL"
 SUPPLY-FLOW = 390
 RETURN-FLOW = 351
 FAN-SCHEDULE = "FAN-SCH-ANNUAL"
 SUPPLY-KW/FLOW = 0.000858
 RETURN-KW/FLOW = 0.000866
 NIGHT-CYCLE-CTRL = CYCLE-ON-ANY
 COOLING-CAPACITY = 17023
 HEATING-CAPACITY = -26641
 FURNACE-AUX = 0
 FURNACE-HIR = 1.25
 CONTROL-ZONE = "Z05-10A-CLA_C"

"Z05-10A-CLA_C" = ZONE
 TYPE = CONDITIONED
 OUTSIDE-AIR-FLOW = 140
 HEAT-TEMP-SCH = "HTG-CLASS-ANNUAL"
 COOL-TEMP-SCH = "CLG-CLASS-ANNUAL"
 SPACE = "Z05-10A-CLA"

"Z06-PSZ-DUMMY" = SYSTEM
 TYPE = PSZ
 HEAT-SOURCE = FURNACE
 ZONE-HEAT-SOURCE = NONE
 HEATING-SCHEDULE = "HTG_AVAIL-ALL-ANNUAL"
 COOLING-SCHEDULE = "CLG_AVAIL-ALL-ANNUAL"
 SUPPLY-FLOW = 390
 RETURN-FLOW = 351
 FAN-SCHEDULE = "FAN-SCH-ANNUAL"
 SUPPLY-KW/FLOW = 0.000858
 RETURN-KW/FLOW = 0.000866
NIGHT-CYCLE-CTRL = CYCLE-ON-ANY
COOLING-CAPACITY = 17023
HEATING-CAPACITY = -26641
FURNACE-AUX = 0
FURNACE-HIR = 1.25
CONTROL-ZONE = "206-10B-CLA_C"

"206-10B-CLA_C" = ZONE
TYPE = CONDITIONED
OUTSIDE-AIR-FLOW = 140
HEAT-TEMP-SCH = "HTG-CLASS-ANNUAL"
COOL-TEMP-SCH = "CLG-CLASS-ANNUAL"
SPACE = "206-10B-CLA"

"207-PSZ-DUMMY" = SYSTEM
TYPE = PSZ
HEAT-SOURCE = FURNACE
ZONE-HEAT-SOURCE = NONE
HEATING-SCHEDULE = "HTG_AVAIL-ALL-ANNUAL"
COOLING-SCHEDULE = "CLG_AVAIL-ALL-ANNUAL"
SUPPLY-FLOW = 300
RETURN-FLOW = 270
FAN-SCHEDULE = "FAN-SCH-ANNUAL"
SUPPLY-KW/FLOW = 0.000884
RETURN-KW/FLOW = 0.000892
NIGHT-CYCLE-CTRL = CYCLE-ON-ANY
COOLING-CAPACITY = 11733
HEATING-CAPACITY = -18856
FURNACE-AUX = 0
FURNACE-HIR = 1.25
CONTROL-ZONE = "207-110-CLAB_C"

"207-110-CLAB_C" = ZONE
TYPE = CONDITIONED
OUTSIDE-AIR-FLOW = 98
HEAT-TEMP-SCH = "HTG-CLASS-ANNUAL"
COOL-TEMP-SCH = "CLG-CLASS-ANNUAL"
SPACE = "207-110-CLAB"

"208-PSZ-DUMMY" = SYSTEM
TYPE = PSZ
HEAT-SOURCE = FURNACE
ZONE-HEAT-SOURCE = NONE
HEATING-SCHEDULE = "HTG_AVAIL-ALL-ANNUAL"
COOLING-SCHEDULE = "CLG_AVAIL-ALL-ANNUAL"
SUPPLY-FLOW = 300
RETURN-FLOW = 270
FAN-SCHEDULE = "FAN-SCH-ANNUAL"
SUPPLY-KW/FLOW = 0.000884
RETURN-KW/FLOW = 0.000892
NIGHT-CYCLE-CTRL = CYCLE-ON-ANY
COOLING-CAPACITY = 11733
HEATING-CAPACITY = -18856
FURNACE-AUX = 0
FURNACE-HIR = 1.25
CONTROL-ZONE = "208-127-CLAB_C"
"Z08-127-CLAB_C" = ZONE
 TYPE = CONDITIONED
 OUTSIDE-AIR-FLOW = 98
 HEAT-TEMP-SCH = "HTG-CLASS-ANNUAL"
 COOL-TEMP-SCH = "CLG-CLASS-ANNUAL"
 SPACE = "Z08-127-CLAB"
..
"Z09-PSZ-DUMMY" = SYSTEM
 TYPE = PSZ
 HEAT-SOURCE = FURNACE
 ZONE-HEAT-SOURCE = NONE
 HEATING-SCHEDULE = "HTG_AVAIL-ALL-ANNUAL"
 COOLING-SCHEDULE = "CLG_AVAIL-ALL-ANNUAL"
 SUPPLY-FLOW = 310
 RETURN-FLOW = 297
 FAN-SCHEDULE = "FAN-SCH-ANNUAL"
 SUPPLY-KW/FLOW = 0.000873
 RETURN-KW/FLOW = 0.000881
 NIGHT-CYCLE-CTRL = CYCLE-ON-ANY
 COOLING-CAPACITY = 13799
 HEATING-CAPACITY = -21800
 FURNACE-AUX = 0
 FURNACE-HIR = 1.25
 CONTROL-ZONE = "Z09-112-CLAB_C"
..
"Z09-112-CLAB_C" = ZONE
 TYPE = CONDITIONED
 OUTSIDE-AIR-FLOW = 114
 HEAT-TEMP-SCH = "HTG-CLASS-ANNUAL"
 COOL-TEMP-SCH = "CLG-CLASS-ANNUAL"
 SPACE = "Z09-112-CLAB"
..
"Z10-PSZ-DUMMY" = SYSTEM
 TYPE = PSZ
 HEAT-SOURCE = FURNACE
 ZONE-HEAT-SOURCE = NONE
 HEATING-SCHEDULE = "HTG_AVAIL-ALL-ANNUAL"
 COOLING-SCHEDULE = "CLG_AVAIL-ALL-ANNUAL"
 SUPPLY-FLOW = 310
 RETURN-FLOW = 297
 FAN-SCHEDULE = "FAN-SCH-ANNUAL"
 SUPPLY-KW/FLOW = 0.000873
 RETURN-KW/FLOW = 0.000881
 NIGHT-CYCLE-CTRL = CYCLE-ON-ANY
 COOLING-CAPACITY = 13799
 HEATING-CAPACITY = -21800
 FURNACE-AUX = 0
 FURNACE-HIR = 1.25
 CONTROL-ZONE = "Z10-125-CLAB_C"
..
"Z10-125-CLAB_C" = ZONE
 TYPE = CONDITIONED
 OUTSIDE-AIR-FLOW = 114
 HEAT-TEMP-SCH = "HTG-CLASS-ANNUAL"
 COOL-TEMP-SCH = "CLG-CLASS-ANNUAL"
 SPACE = "Z10-125-CLAB"
..
"Z11-PSZ-DUMMY" = SYSTEM
 TYPE = PSZ
 HEAT-SOURCE = FURNACE
 ZONE-HEAT-SOURCE = NONE
 HEATING-SCHEDULE = "HTG_AVAIL-ALL-ANNUAL"
 COOLING-SCHEDULE = "CLG_AVAIL-ALL-ANNUAL"
 RETURN-FLOW = 498
 OA-CONTROL = FIXED
 FAN-SCHEDULE = "FAN-SCH-ANNUAL"
 SUPPLY-KW/FLOW = 0.000827
 RETURN-KW/FLOW = 0.000833
 NIGHT-CYCLE-CTRL = CYCLE-ON-ANY
 COOLING-CAPACITY = 25735
 HEATING-CAPACITY = -42543
 FURNACE-AUX = 0
 FURNACE-HIR = 1.25
 CONTROL-ZONE = "Z11-130-OFC_C"
.
"Z11-130-OFC_C" = ZONE
 TYPE = CONDITIONED
 OUTSIDE-AIR-FLOW = 189
 HEAT-TEMP-SCH = "HTG-OFC-ANNUAL"
 COOL-TEMP-SCH = "CLG-OFC-ANNUAL"
 SPACE = "Z11-130-OFC"
.
"Z12-PSZ-DUMMY" = SYSTEM
 TYPE = PSZ
 HEAT-SOURCE = FURNACE
 ZONE-HEAT-SOURCE = NONE
 HEATING-SCHEDULE = "HTG_AVAIL-ALL-ANNUAL"
 COOLING-SCHEDULE = "CLG_AVAIL-ALL-ANNUAL"
 RETURN-FLOW = 113
 OA-CONTROL = FIXED
 FAN-SCHEDULE = "FAN-SCH-ANNUAL"
 SUPPLY-KW/FLOW = 0.000945
 RETURN-KW/FLOW = 0.000956
 NIGHT-CYCLE-CTRL = CYCLE-ON-ANY
 COOLING-CAPACITY = 6719
 HEATING-CAPACITY = -10584
 FURNACE-AUX = 0
 FURNACE-HIR = 1.25
 CONTROL-ZONE = "Z12-126-OFC_C"
.
"Z12-126-OFC_C" = ZONE
 TYPE = CONDITIONED
 OUTSIDE-AIR-FLOW = 37
 HEAT-TEMP-SCH = "HTG-OFC-ANNUAL"
 COOL-TEMP-SCH = "CLG-OFC-ANNUAL"
 SPACE = "Z12-126-OFC"
.
"Z13-PSZ-DUMMY" = SYSTEM
 TYPE = PSZ
 HEAT-SOURCE = FURNACE
 ZONE-HEAT-SOURCE = NONE
 HEATING-SCHEDULE = "HTG_AVAIL-ALL-ANNUAL"
 COOLING-SCHEDULE = "CLG_AVAIL-ALL-ANNUAL"
 RETURN-FLOW = 468
OA-CONTROL = FIXED
FAN-SCHEDULE = "FAN-SCH-ANNUAL"
SUPPLY-KW/FLOW = 0.000831
RETURN-KW/FLOW = 0.000837
NIGHT-CYCLE-CTRL = CYCLE-ON-ANY
COOLING-CAPACITY = 25568
HEATING-CAPACITY = -40265
FURNACE-AUX = 0
FURNACE-HIR = 1.25
CONTROL-ZONE = "Z13-120-OFC_C"

"Z13-120-OFC_C" = ZONE
 TYPE = CONDITIONED
 OUTSIDE-AIR-FLOW = 166
 HEAT-TEMP-SCH = "HTG-OFC-ANNUAL"
 COOL-TEMP-SCH = "CLG-OFC-ANNUAL"
 SPACE = "Z13-120-OFC"

"Z15-PSZ-DUMMY" = SYSTEM
 TYPE = PSZ
 HEAT-SOURCE = FURNACE
 ZONE-HEAT-SOURCE = NONE
 HEATING-SCHEDULE = "HTG_AVAIL-ALL-ANNUAL"
 COOLING-SCHEDULE = "CLG_AVAIL-ALL-ANNUAL"
 RETURN-FLOW = 607
 OA-CONTROL = FIXED
 FAN-SCHEDULE = "FAN-SCH-ANNUAL"
 SUPPLY-KW/FLOW = 0.000816
 RETURN-KW/FLOW = 0.000822
 NIGHT-CYCLE-CTRL = CYCLE-ON-ANY
 COOLING-CAPACITY = 30133
 HEATING-CAPACITY = -48256
 FURNACE-AUX = 0
 FURNACE-HIR = 1.25
 CONTROL-ZONE = "Z15-293-COR_C"

"Z15-293-COR_C" = ZONE
 TYPE = CONDITIONED
 OUTSIDE-AIR-FLOW = 211
 HEAT-TEMP-SCH = "HTG-COR-ANNUAL"
 COOL-TEMP-SCH = "CLG-COR-ANNUAL"
 SPACE = "Z15-293-COR"

"Z16-PSZ-DUMMY" = SYSTEM
 TYPE = PSZ
 HEAT-SOURCE = FURNACE
 ZONE-HEAT-SOURCE = NONE
 HEATING-SCHEDULE = "HTG_AVAIL-ALL-ANNUAL"
 COOLING-SCHEDULE = "CLG_AVAIL-ALL-ANNUAL"
 RETURN-FLOW = 90
 FAN-SCHEDULE = "FAN-SCH-ANNUAL"
 SUPPLY-KW/FLOW = 0.00097
 RETURN-KW/FLOW = 0.000983
 NIGHT-CYCLE-CTRL = CYCLE-ON-ANY
 COOLING-CAPACITY = 4308
 HEATING-CAPACITY = -6920
 FURNACE-AUX = 0
FURNACE-HIR = 1.25
CONTROL-ZONE = "216-295-RR_C"

"216-295-RR_C" = ZONE
TYPE = CONDITIONED
OUTSIDE-AIR-FLOW = 31
HEAT-TEMP-SCH = "HTG-COR-ANNUAL"
COOL-TEMP-SCH = "CLG-COR-ANNUAL"
SPACE = "216-295-RR"

"218-PSZ-DUMMY" = SYSTEM
TYPE = PSZ
HEAT-SOURCE = FURNACE
ZONE-HEAT-SOURCE = NONE
HEATING-SCHEDULE = "HTG_AVAIL-ALL-ANNUAL"
COOLING-SCHEDULE = "CLG_AVAIL-ALL-ANNUAL"
RETURN-FLOW = 214
FAN-SCHEDULE = "FAN-SCH-ANNUAL"
SUPPLY-KW/FLOW = 0.000885
RETURN-KW/FLOW = 0.000893
NIGHT-CYCLE-CTRL = CYCLE-ON-ANY
COOLING-CAPACITY = 11060
HEATING-CAPACITY = -18269
FURNACE-AUX = 0
FURNACE-HIR = 1.25
CONTROL-ZONE = "218-209-OF_C"

"218-209-OF_C" = ZONE
TYPE = CONDITIONED
OUTSIDE-AIR-FLOW = 93
HEAT-TEMP-SCH = "HTG-OFC-ANNUAL"
COOL-TEMP-SCH = "CLG-OFC-ANNUAL"
SPACE = "218-209-OFC"

"219-PSZ-DUMMY" = SYSTEM
TYPE = PSZ
HEAT-SOURCE = FURNACE
ZONE-HEAT-SOURCE = NONE
HEATING-SCHEDULE = "HTG_AVAIL-ALL-ANNUAL"
COOLING-SCHEDULE = "CLG_AVAIL-ALL-ANNUAL"
RETURN-FLOW = 324
FAN-SCHEDULE = "FAN-SCH-ANNUAL"
SUPPLY-KW/FLOW = 0.000854
RETURN-KW/FLOW = 0.000861
NIGHT-CYCLE-CTRL = CYCLE-ON-ANY
COOLING-CAPACITY = 15124
HEATING-CAPACITY = -24718
FURNACE-AUX = 0
FURNACE-HIR = 1.25
CONTROL-ZONE = "219-291-COR"

"219-291-COR" = ZONE
TYPE = CONDITIONED
OUTSIDE-AIR-FLOW = 107
HEAT-TEMP-SCH = "HTG-COR-ANNUAL"
COOL-TEMP-SCH = "CLG-COR-ANNUAL"
SPACE = "219-291-COR"
"Z20-PSZ-DUMMY" = SYSTEM
 TYPE = PSZ
 HEAT-SOURCE = FURNACE
 ZONE-HEAT-SOURCE = NONE
 HEATING-SCHEDULE = "HTG_AVAIL-ALL-ANNUAL"
 COOLING-SCHEDULE = "CLG_AVAIL-ALL-ANNUAL"
 RETURN-FLOW = 246
 FAN-SCHEDULE = "FAN-SCH-ANNUAL"
 SUPPLY-KW/FLOW = 0.000874
 RETURN-KW/FLOW = 0.000882
 NIGHT-CYCLE-CTRL = CYCLE-ON-ANY
 COOLING-CAPACITY = 12645
 HEATING-CAPACITY = -20135
 FURNACE-AUX = 0
 FURNACE-HIR = 1.25
 CONTROL-ZONE = "Z20-206-CLAB_C"

"Z20-206-CLAB_C" = ZONE
 TYPE = CONDITIONED
 OUTSIDE-AIR-FLOW = 97
 HEAT-TEMP-SCH = "HTG-CLASS-ANNUAL"
 COOL-TEMP-SCH = "CLG-CLASS-ANNUAL"
 SPACE = "Z20-206-CLAB"

"Z21-PSZ-DUMMY" = SYSTEM
 TYPE = PSZ
 HEAT-SOURCE = FURNACE
 ZONE-HEAT-SOURCE = NONE
 HEATING-SCHEDULE = "HTG_AVAIL-ALL-ANNUAL"
 COOLING-SCHEDULE = "CLG_AVAIL-ALL-ANNUAL"
 RETURN-FLOW = 335
 FAN-SCHEDULE = "FAN-SCH-ANNUAL"
 SUPPLY-KW/FLOW = 0.000852
 RETURN-KW/FLOW = 0.000859
 NIGHT-CYCLE-CTRL = CYCLE-ON-ANY
 COOLING-CAPACITY = 16959
 HEATING-CAPACITY = -27709
 FURNACE-AUX = 0
 FURNACE-HIR = 1.25
 CONTROL-ZONE = "Z21-212-LEARN_C"

"Z21-212-LEARN_C" = ZONE
 TYPE = CONDITIONED
 OUTSIDE-AIR-FLOW = 135
 HEAT-TEMP-SCH = "HTG-CLASS-ANNUAL"
 COOL-TEMP-SCH = "CLG-CLASS-ANNUAL"
 SPACE = "Z21-212-LEARN"

"Z22-PSZ-DUMMY" = SYSTEM
 TYPE = PSZ
 HEAT-SOURCE = FURNACE
 ZONE-HEAT-SOURCE = NONE
 HEATING-SCHEDULE = "HTG_AVAIL-ALL-ANNUAL"
 COOLING-SCHEDULE = "CLG_AVAIL-ALL-ANNUAL"
 RETURN-FLOW = 337
 FAN-SCHEDULE = "FAN-SCH-ANNUAL"
SUPPLY-KW/FLOW = 0.000851
RETURN-KW/FLOW = 0.000858
NIGHT-CYCLE-CTRL = CYCLE-ON-ANY
COOLING-CAPACITY = 18372
HEATING-CAPACITY = -28329
FURNACE-AUX = 0
FURNACE-HIR = 1.25
CONTROL-ZONE = "Z22-208-CLAB_C"

"Z22-208-CLAB_C" = ZONE
TYPE = CONDITIONED
OUTSIDE-AIR-FLOW = 141
HEAT-TEMP-SCH = "HTG-CLASS-ANNUAL"
COOL-TEMP-SCH = "CLG-CLASS-ANNUAL"
SPACE = "Z22-208-CLAB"

"Z23-PSZ-DUMMY" = SYSTEM
TYPE = PSZ
HEAT-SOURCE = FURNACE
ZONE-HEAT-SOURCE = NONE
HEATING-SCHEDULE = "HTG_AVAIL-ALL-ANNUAL"
COOLING-SCHEDULE = "CLG_AVAIL-ALL-ANNUAL"
RETURN-FLOW = 402
FAN-SCHEDULE = "FAN-SCH-ANNUAL"
SUPPLY-KW/FLOW = 0.00084
RETURN-KW/FLOW = 0.000847
NIGHT-CYCLE-CTRL = CYCLE-ON-ANY
COOLING-CAPACITY = 20404
HEATING-CAPACITY = -33389
FURNACE-AUX = 0
FURNACE-HIR = 1.25
CONTROL-ZONE = "Z23-212-LEARN_C"

"Z23-212-LEARN_C" = ZONE
TYPE = CONDITIONED
OUTSIDE-AIR-FLOW = 163
HEAT-TEMP-SCH = "HTG-CLASS-ANNUAL"
COOL-TEMP-SCH = "CLG-CLASS-ANNUAL"
SPACE = "Z23-212-LEARN"

"Z24-PSZ-DUMMY" = SYSTEM
TYPE = PSZ
HEAT-SOURCE = FURNACE
ZONE-HEAT-SOURCE = NONE
HEATING-SCHEDULE = "HTG_AVAIL-ALL-ANNUAL"
COOLING-SCHEDULE = "CLG_AVAIL-ALL-ANNUAL"
RETURN-FLOW = 214
FAN-SCHEDULE = "FAN-SCH-ANNUAL"
SUPPLY-KW/FLOW = 0.000885
RETURN-KW/FLOW = 0.000893
NIGHT-CYCLE-CTRL = CYCLE-ON-ANY
COOLING-CAPACITY = 10796
HEATING-CAPACITY = -17745
FURNACE-AUX = 0
FURNACE-HIR = 1.25
CONTROL-ZONE = "Z24-210-OFC_C"
"Z24-210-OFC_C" = ZONE
 TYPE = CONDITIONED
 OUTSIDE-AIR-FLOW = 87
 HEAT-TEMP-SCH = "HTG-OFC-ANNUAL"
 COOL-TEMP-SCH = "CLG-OFC-ANNUAL"
 SPACE = "Z24-210-OFC"

"Z25-PSZ-DUMMY" = SYSTEM
 TYPE = PSZ
 HEAT-SOURCE = FURNACE
 ZONE-HEAT-SOURCE = NONE
 HEATING-SCHEDULE = "HTG_AVAIL-ALL-ANNUAL"
 COOLING-SCHEDULE = "CLG_AVAIL-ALL-ANNUAL"
 RETURN-FLOW = 73
 FAN-SCHEDULE = "FAN-SCH-ANNUAL"
 SUPPLY-KW/FLOW = 0.000997
 RETURN-KW/FLOW = 0.001011
 NIGHT-CYCLE-CTRL = CYCLE-ON-ANY
 COOLING-CAPACITY = 3667
 HEATING-CAPACITY = -5936
 FURNACE-AUX = 0
 FURNACE-HIR = 1.25
 CONTROL-ZONE = "Z25-212-MEDIA_C"

"Z25-212-MEDIA_C" = ZONE
 TYPE = CONDITIONED
 OUTSIDE-AIR-FLOW = 29
 HEAT-TEMP-SCH = "HTG-CLASS-ANNUAL"
 COOL-TEMP-SCH = "CLG-CLASS-ANNUAL"
 SPACE = "Z25-212-MEDIA"

"Z26-PSZ-DUMMY" = SYSTEM
 TYPE = PSZ
 HEAT-SOURCE = FURNACE
 ZONE-HEAT-SOURCE = NONE
 HEATING-SCHEDULE = "HTG_AVAIL-ALL-ANNUAL"
 COOLING-SCHEDULE = "CLG_AVAIL-ALL-ANNUAL"
 RETURN-FLOW = 1071
 FAN-SCHEDULE = "FAN-SCH-ANNUAL"
 SUPPLY-KW/FLOW = 0.000789
 RETURN-KW/FLOW = 0.000793
 NIGHT-CYCLE-CTRL = CYCLE-ON-ANY
 COOLING-CAPACITY = 56685
 HEATING-CAPACITY = -92934
 FURNACE-AUX = 0
 FURNACE-HIR = 1.25
 CONTROL-ZONE = "Z26-211-FUND_C"

"Z26-211-FUND_C" = ZONE
 TYPE = CONDITIONED
 OUTSIDE-AIR-FLOW = 433
 HEAT-TEMP-SCH = "HTG-CLASS-ANNUAL"
 COOL-TEMP-SCH = "CLG-CLASS-ANNUAL"
 SPACE = "Z26-211-FUND"

"Z27-PSZ-DUMMY" = SYSTEM
 TYPE = PSZ
HEAT-SOURCE = FURNACE
ZONE-HEAT-SOURCE = NONE
HEATING-SCHEDULE = "HTG_AVAIL-ALL-ANNUAL"
COOLING-SCHEDULE = "CLG_AVAIL-ALL-ANNUAL"
RETURN-FLOW = 891
FAN-SCHEDULE = "FAN-SCH-ANNUAL"
SUPPLY-KW/FLOW = 0.000797
RETURN-KW/FLOW = 0.000802
NIGHT-CYCLE-CTRL = CYCLE-ON-ANY
COOLING-CAPACITY = 47043
HEATING-CAPACITY = -77463
FURNACE-AUX = 0
FURNACE-HIR = 1.25
CONTROL-ZONE = "Z27-215-BEDLAB_C"

"Z27-215-BEDLAB_C" = ZONE
 TYPE = CONDITIONED
 OUTSIDE-AIR-FLOW = 373
 HEAT-TEMP-SCH = "HTG-CLASS-ANNUAL"
 COOL-TEMP-SCH = "CLG-CLASS-ANNUAL"
 SPACE = "Z27-215-BEDLAB"

"Z28-PSZ-DUMMY" = SYSTEM
 TYPE = PSZ
 HEAT-SOURCE = FURNACE
 ZONE-HEAT-SOURCE = NONE
 HEATING-SCHEDULE = "HTG_AVAIL-ALL-ANNUAL"
 COOLING-SCHEDULE = "CLG_AVAIL-ALL-ANNUAL"
 RETURN-FLOW = 872
 OA-CONTROL = FIXED
 FAN-SCHEDULE = "FAN-SCH-ANNUAL"
 SUPPLY-KW/FLOW = 0.000798
 RETURN-KW/FLOW = 0.000803
 NIGHT-CYCLE-CTRL = CYCLE-ON-ANY
 COOLING-CAPACITY = 41407
 HEATING-CAPACITY = -66554
 FURNACE-AUX = 0
 FURNACE-HIR = 1.25
 CONTROL-ZONE = "Z28-217-LOUNGE_C"

"Z28-217-LOUNGE_C" = ZONE
 TYPE = CONDITIONED
 OUTSIDE-AIR-FLOW = 260
 HEAT-TEMP-SCH = "HTG-OFC-ANNUAL"
 COOL-TEMP-SCH = "CLG-OFC-ANNUAL"
 SPACE = "Z28-217-LOUNGE"

"Z29-PSZ-DUMMY" = SYSTEM
 TYPE = PSZ
 HEAT-SOURCE = FURNACE
 ZONE-HEAT-SOURCE = NONE
 HEATING-SCHEDULE = "HTG_AVAIL-ALL-ANNUAL"
 COOLING-SCHEDULE = "CLG_AVAIL-ALL-ANNUAL"
 RETURN-FLOW = 550
 OA-CONTROL = FIXED
 FAN-SCHEDULE = "FAN-SCH-ANNUAL"
 SUPPLY-KW/FLOW = 0.000821
RETURN-KW/FLOW = 0.000827
NIGHT-CYCLE-CTRL = CYCLE-ON-ANY
COOLING-CAPACITY = 29509
HEATING-CAPACITY = -49339
FURNACE-AUX = 0
FURNACE-HIR = 1.25
CONTROL-ZONE = "229-223-OFC_C"

"229-223-OFC_C" = ZONE
 TYPE = CONDITIONED
 OUTSIDE-AIR-FLOW = 226
 HEAT-TEMP-SCH = "HTG-OFC-ANNUAL"
 COOL-TEMP-SCH = "CLG-OFC-ANNUAL"
 SPACE = "229-223-OFC"

$ ***
$ ** **
$ ** Metering & Misc HVAC **
$ ** **
$ ***

$ ---
$ Equipment Controls $
$ ---

$ ---
$ Load Management $
$ ---

$ ***
$ ** **
$ ** Utility Rates **
$ ** **
$ ***

$ ---
$ Ratchets $
$ ---

$ ---
$ Block Charges $
$ ---

"ON-PEAK" = BLOCK-CHARGE
 BLOCK-SCH = "ELE-SCH-FLAG"
 SCH-FLAG = 1.1
 BLOCKS-ARE = INCREMENTAL
 BLOCKS-1 = (1)
 COSTS-1 = (0.105771)
BLOCK2-TYPE = DEMAND
BLOCKS-2 = (1)
COSTS-2 = (9.63)

"OFF-PEAK" = BLOCK-CHARGE
BLOCK-SCH = "ELE-SCH-FLAG"
SCH-FLAG = 1.2
BLOCKS-ARE = INCREMENTAL
BLOCKS-1 = (1)
COSTS-1 = (0.0840312)
BLOCK2-TYPE = DEMAND
BLOCKS-2 = (1)
COSTS-2 = (0)

"GAS-BLK" = BLOCK-CHARGE
BLOCKS-ARE = INCREMENTAL
BLOCKS-1 = (3, 277, 4720, 1)
COSTS-1 = (0, 1.11991, 1.00711, 0.90053)

$ ---
$ Utility Rates
$ ---

"RGEE-SC08" = UTILITY-RATE
TYPE = ELECTRICITY
ELEC-METERS = ("EM1")
MONTH-CHGS = (435.4)
BLOCK-CHARGES = ("ON-PEAK", "OFF-PEAK")

"RGEG-SC03" = UTILITY-RATE
TYPE = NATURAL-GAS
FUEL-METERS = ("FM1")
MONTH-CHGS = (19.35)
BLOCK-CHARGES = ("GAS-BLK")

$ ***
$ ** **
$ ** Output Reporting **
$ ** **
$ ***

$ ---
$ Loads Non-Hourly Reporting
$ ---

LOADS-REPORT
VERIFICATION = (LV-B, LV-D)
SUMMARY = (LS-C, LS-D, LS-F, LS-I)

$ ---
$ Systems Non-Hourly Reporting
$ ---

SYSTEMS-REPORT

VERIFICATION = (SV-A)
SUMMARY = (ALL-SUMMARY)
...

$ ---

$ Plant Non-Hourly Reporting
$ ---

PLANT-REPORT

...

$ ---

$ Economics Non-Hourly Reporting
$ ---

ECONOMICS-REPORT

...

$ ---

$ Hourly Reporting
$ ---

$ ---

$ THE END
$ ---

END ..
COMPUTE ..
STOP ..
Output for LEED Design Model
NUMBER OF SPACES

<table>
<thead>
<tr>
<th>SPACES</th>
<th>EXTERIOR</th>
<th>INTERIOR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>29</td>
<td>9</td>
</tr>
</tbody>
</table>

LIGHTS

<table>
<thead>
<tr>
<th>SPACE</th>
<th>FLOOR</th>
<th>SPACE</th>
<th>EQUIP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MULTIPLIER</td>
<td>TYPE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(WATT / INFILTRATION)</td>
<td></td>
</tr>
</tbody>
</table>

EQUIP

<table>
<thead>
<tr>
<th>SPACE</th>
<th>FLOOR</th>
<th>SPACE</th>
<th>LIGHTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MULTIPLIER</td>
<td>TYPE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(WATT / INFILTRATION)</td>
<td></td>
</tr>
</tbody>
</table>

Spaces on floor: Floor-1

- **Z01-191-COR**: 1.0 EXT 0.0 0.79 3.0 0.07 AIR-CHANGE 0.20 1792.0 25888.0
- **Z02-195-RR**: 1.0 INT 0.0 0.93 1.0 0.07 AIR-CHANGE 0.00 325.0 4550.0
- **Z03-199-STD**: 1.0 INT 0.0 0.98 1.0 0.07 AIR-CHANGE 0.00 481.0 6734.0
- **Z04-191-COR**: 1.0 EXT 0.0 0.76 3.0 0.07 AIR-CHANGE 0.20 1943.0 27202.0
- **Z05-104-CLA**: 1.0 INT 0.0 0.83 17.0 0.49 AIR-CHANGE 0.00 961.0 13454.0
- **Z06-108-CLA**: 1.0 INT 0.0 0.83 17.0 0.49 AIR-CHANGE 0.00 961.0 13454.0
- **Z07-110-CLAB**: 1.0 INT 0.0 1.15 8.0 0.75 AIR-CHANGE 0.00 620.0 8680.0
- **Z08-127-CLAB**: 1.0 INT 0.0 1.15 8.0 0.75 AIR-CHANGE 0.00 620.0 8680.0
- **Z09-112-CLAB**: 1.0 INT 0.0 1.09 12.0 0.71 AIR-CHANGE 0.00 651.0 9114.0
- **Z10-125-CLAB**: 1.0 INT 0.0 1.09 12.0 0.71 AIR-CHANGE 0.00 651.0 9114.0
- **Z11-130-OFC**: 1.0 EXT 0.0 1.16 6.0 1.46 AIR-CHANGE 0.20 966.0 13524.0
- **Z12-126-OFC**: 1.0 EXT 0.0 0.71 1.0 0.84 AIR-CHANGE 0.20 224.0 3136.0
- **Z13-120-OFC**: 1.0 EXT 0.0 1.02 5.0 0.98 AIR-CHANGE 0.20 1050.0 14700.0
- **Z14-199-DATA**: 1.0 INT 0.0 1.30 1.0 4.14 AIR-CHANGE 0.00 91.0 1274.0

Spaces on floor: Floor-2

- **Z15-293-COR**: 1.0 EXT 0.0 0.57 2.0 0.07 AIR-CHANGE 0.20 1435.0 25830.0
- **Z16-295-RR**: 1.0 EXT 0.0 0.93 1.0 0.07 AIR-CHANGE 0.00 325.0 5850.0
- **Z17-299-DATA**: 1.0 EXT 0.0 1.30 1.0 6.14 AIR-CHANGE 0.00 91.0 1638.0
- **Z18-209-OFC**: 1.0 EXT 0.0 1.22 3.0 1.60 AIR-CHANGE 0.20 351.0 6318.0
- **Z19-291-COR**: 1.0 EXT 0.0 0.64 3.0 0.07 AIR-CHANGE 0.00 1416.0 25488.0
- **Z20-206-CLAB**: 1.0 EXT 0.0 1.15 8.0 0.45 AIR-CHANGE 0.00 620.0 11160.0
- **Z21-212-LEARN**: 1.0 EXT 0.0 1.15 8.0 1.52 AIR-CHANGE 0.00 620.0 11160.0
- **Z22-208-CLAB**: 1.0 EXT 0.0 1.09 16.0 0.71 AIR-CHANGE 0.00 651.0 11718.0
- **Z23-212-LEARN**: 1.0 EXT 0.0 1.14 10.0 1.52 AIR-CHANGE 0.00 741.0 13338.0
- **Z24-210-OFC**: 1.0 EXT 0.0 0.87 3.0 1.53 AIR-CHANGE 0.00 429.0 7722.0
- **Z25-212-MEDIA**: 1.0 EXT 0.0 0.89 1.0 2.12 AIR-CHANGE 0.00 132.0 2376.0
- **Z26-211-FUND**: 1.0 EXT 0.0 1.28 20.0 1.31 AIR-CHANGE 0.20 1718.0 30924.0
- **Z27-215-BEDLAB**: 1.0 EXT 0.0 1.61 20.0 1.45 AIR-CHANGE 0.20 1292.0 23256.0
- **Z28-217-LOUNGE**: 1.0 EXT 0.0 1.57 6.0 1.16 AIR-CHANGE 0.20 602.0 10836.0
- **Z29-223-OFC**: 1.0 EXT 0.0 1.14 6.0 1.34 AIR-CHANGE 0.20 840.0 15120.0

BUILDING TOTALS

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>203.0</td>
<td>22599.0</td>
<td>361438.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Month</td>
<td>PEAK PCT</td>
<td>PEAK ENDUSE</td>
<td>DAY/HR</td>
<td>MAX KW</td>
<td>KWH</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>-------------</td>
<td>--------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>JAN</td>
<td>36.4%</td>
<td>22.1</td>
<td>1/11</td>
<td>22.1</td>
<td>3803</td>
</tr>
<tr>
<td></td>
<td>28.3</td>
<td>23.0</td>
<td>0/0</td>
<td>23.0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>1.2</td>
<td>0/0</td>
<td>1.2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>29.0</td>
<td>0.0</td>
<td>0/0</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0/0</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>21.5</td>
<td>11.9</td>
<td>0/0</td>
<td>11.9</td>
<td>321</td>
</tr>
<tr>
<td></td>
<td>1.1</td>
<td>0.0</td>
<td>0/0</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0/0</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>JUN</td>
<td>31.5</td>
<td>18.3</td>
<td>2/11</td>
<td>18.3</td>
<td>5127</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>1.1</td>
<td>0/0</td>
<td>1.1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1.9</td>
<td>11.8</td>
<td>0/0</td>
<td>11.8</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0/0</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0/0</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.7</td>
<td>0.0</td>
<td>0/0</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>AUG</td>
<td>38.3</td>
<td>22.7</td>
<td>23/11</td>
<td>22.7</td>
<td>6480</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0/0</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>1.9</td>
<td>0/0</td>
<td>1.9</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0/0</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0/0</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>MAR</td>
<td>5882.0</td>
<td>23.0</td>
<td>1/11</td>
<td>23.0</td>
<td>782</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0/0</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0/0</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5789.0</td>
<td>11.2</td>
<td>0/0</td>
<td>11.2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0/0</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0/0</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>FEB</td>
<td>5130.0</td>
<td>23.0</td>
<td>2/11</td>
<td>22.7</td>
<td>5334</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0/0</td>
<td>0.0</td>
<td>0</td>
</tr>
</tbody>
</table>

Note:
- All values are in percent unless otherwise specified.
- Days/Hours are in 24-hour format.
- MAX KW represents the maximum kilowatt usage for each month.
- KWH represents kilowatt-hours for each month.
- The table covers the months of January to August.
<table>
<thead>
<tr>
<th>Month</th>
<th>KWH</th>
<th>0.</th>
<th>8708.</th>
<th>0.</th>
<th>2492.</th>
<th>76.</th>
<th>474.</th>
<th>4875.</th>
<th>0.</th>
<th>0.</th>
<th>0.</th>
<th>222.</th>
<th>22196.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEP</td>
<td>MAX KW</td>
<td>22.1</td>
<td>0.0</td>
<td>23.0</td>
<td>0.0</td>
<td>17.5</td>
<td>1.1</td>
<td>1.4</td>
<td>14.9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.7</td>
<td>76.5</td>
</tr>
<tr>
<td></td>
<td>DAY/HR</td>
<td>4/11</td>
<td>0/0</td>
<td>4/11</td>
<td>0/0</td>
<td>5/11</td>
<td>5/11</td>
<td>4/11</td>
<td>5/5</td>
<td>6/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td></td>
<td>PEAK ENDUSE</td>
<td>22.1</td>
<td>0.0</td>
<td>23.0</td>
<td>0.0</td>
<td>17.5</td>
<td>1.1</td>
<td>0.8</td>
<td>12.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>PEAK PCT</td>
<td>28.9</td>
<td>0.0</td>
<td>30.0</td>
<td>0.0</td>
<td>22.8</td>
<td>1.4</td>
<td>1.0</td>
<td>15.8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>OCT</td>
<td>KWH</td>
<td>5882.</td>
<td>0.</td>
<td>9641.</td>
<td>0.</td>
<td>1162.</td>
<td>8.</td>
<td>546.</td>
<td>4989.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>229.</td>
</tr>
<tr>
<td></td>
<td>MAX KW</td>
<td>22.1</td>
<td>0.0</td>
<td>23.0</td>
<td>0.0</td>
<td>14.0</td>
<td>0.5</td>
<td>1.3</td>
<td>13.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>DAY/HR</td>
<td>25/11</td>
<td>0/0</td>
<td>1/11</td>
<td>0/0</td>
<td>4/15</td>
<td>4/15</td>
<td>4/14</td>
<td>5/15</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>PEAK ENDUSE</td>
<td>22.1</td>
<td>0.0</td>
<td>22.7</td>
<td>0.0</td>
<td>14.0</td>
<td>0.5</td>
<td>1.3</td>
<td>13.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>PEAK PCT</td>
<td>30.1</td>
<td>0.0</td>
<td>30.8</td>
<td>0.0</td>
<td>19.0</td>
<td>0.7</td>
<td>1.8</td>
<td>17.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>NOV</td>
<td>KWH</td>
<td>5511.</td>
<td>0.</td>
<td>8986.</td>
<td>0.</td>
<td>549.</td>
<td>0.</td>
<td>598.</td>
<td>5057.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>302.</td>
</tr>
<tr>
<td></td>
<td>MAX KW</td>
<td>22.2</td>
<td>0.0</td>
<td>23.0</td>
<td>0.0</td>
<td>2.4</td>
<td>0.0</td>
<td>1.1</td>
<td>11.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>DAY/HR</td>
<td>23/15</td>
<td>0/0</td>
<td>1/11</td>
<td>0/0</td>
<td>7/14</td>
<td>0/0</td>
<td>26/6</td>
<td>9/15</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>1/1</td>
</tr>
<tr>
<td></td>
<td>PEAK ENDUSE</td>
<td>22.1</td>
<td>0.0</td>
<td>22.7</td>
<td>0.0</td>
<td>1.8</td>
<td>0.0</td>
<td>1.1</td>
<td>11.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>PEAK PCT</td>
<td>37.7</td>
<td>0.0</td>
<td>38.6</td>
<td>0.0</td>
<td>3.1</td>
<td>0.0</td>
<td>1.9</td>
<td>18.7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>DEC</td>
<td>KWH</td>
<td>5009.</td>
<td>0.</td>
<td>8136.</td>
<td>0.</td>
<td>603.</td>
<td>0.</td>
<td>735.</td>
<td>6055.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>312.</td>
</tr>
<tr>
<td></td>
<td>MAX KW</td>
<td>22.2</td>
<td>0.0</td>
<td>23.0</td>
<td>0.0</td>
<td>6.0</td>
<td>0.0</td>
<td>1.2</td>
<td>12.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>DAY/HR</td>
<td>13/15</td>
<td>0/0</td>
<td>3/11</td>
<td>0/0</td>
<td>5/13</td>
<td>0/0</td>
<td>17/6</td>
<td>14/15</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>1/1</td>
</tr>
<tr>
<td></td>
<td>PEAK ENDUSE</td>
<td>22.1</td>
<td>0.0</td>
<td>23.0</td>
<td>0.0</td>
<td>5.4</td>
<td>0.0</td>
<td>1.1</td>
<td>10.4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>PEAK PCT</td>
<td>35.7</td>
<td>0.0</td>
<td>37.0</td>
<td>0.0</td>
<td>8.8</td>
<td>0.0</td>
<td>1.8</td>
<td>16.7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

SEASONAL SUMMARY

KWH 60490. 0. 97475. 0. 22671. 534. 6787. 64788. 0. 0. 0. 2835. 255580.
MAX KW 22.2 0.0 23.0 0.0 19.4 1.2 1.4 24.9 0.0 0.0 0.0 0.7 81.7
DAY/yr 11/23 0/0 1/23 0/0 7/19 7/19 6/1 7/20 0/0 0/0 0/0 1/1 7/19
PEAK ENDUSE 22.1 0.0 22.7 0.0 19.4 1.2 0.8 15.4 0.0 0.0 0.0 0.0
PEAK PCT 27.1 0.0 27.8 0.0 23.8 1.5 1.0 18.9 0.0 0.0 0.0 0.0
<table>
<thead>
<tr>
<th>Month</th>
<th>LIGHTS</th>
<th>TASK</th>
<th>MISC</th>
<th>SPACE</th>
<th>SPACE</th>
<th>HEAT</th>
<th>PUMPS</th>
<th>VENT</th>
<th>REFRIG</th>
<th>NT PUMP</th>
<th>DOMEST</th>
<th>EXT</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAN</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>150.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>157.0</td>
</tr>
<tr>
<td></td>
<td>MAX MBTU/HR</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>DAY/HR</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>27/6</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>27/6</td>
</tr>
<tr>
<td></td>
<td>PEAK ENDUSE</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>PEAK PCT</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>99.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>FEB</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>125.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>131.0</td>
</tr>
<tr>
<td></td>
<td>MAX MBTU/HR</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>DAY/HR</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>12/6</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>12/6</td>
</tr>
<tr>
<td></td>
<td>PEAK ENDUSE</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>PEAK PCT</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>99.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MAR</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>83.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>91.0</td>
</tr>
<tr>
<td></td>
<td>MAX MBTU/HR</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>DAY/HR</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>5/7</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>5/7</td>
</tr>
<tr>
<td></td>
<td>PEAK ENDUSE</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>PEAK PCT</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>99.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>APR</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>37.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>45.0</td>
</tr>
<tr>
<td></td>
<td>MAX MBTU/HR</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>DAY/HR</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>16/6</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>16/6</td>
</tr>
<tr>
<td></td>
<td>PEAK ENDUSE</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>PEAK PCT</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>99.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MAY</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>16.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>23.0</td>
</tr>
<tr>
<td></td>
<td>MAX MBTU/HR</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>DAY/HR</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>29/7</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>29/7</td>
</tr>
<tr>
<td></td>
<td>PEAK ENDUSE</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>PEAK PCT</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>99.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>JUN</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>6.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>12.0</td>
</tr>
<tr>
<td></td>
<td>MAX MBTU/HR</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>DAY/HR</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>4/7</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>4/7</td>
</tr>
<tr>
<td></td>
<td>PEAK ENDUSE</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>PEAK PCT</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>47.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>52.0</td>
</tr>
<tr>
<td>JUL</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>3.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>MAX MBTU/HR</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>DAY/HR</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>9/7</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>9/7</td>
</tr>
<tr>
<td></td>
<td>PEAK ENDUSE</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>PEAK PCT</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>97.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.1</td>
</tr>
<tr>
<td>AUG</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>4.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>MAX MBTU/HR</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>DAY/HR</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>1/11</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>1/11</td>
</tr>
<tr>
<td></td>
<td>PEAK ENDUSE</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>PEAK PCT</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>51.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>49.0</td>
</tr>
<tr>
<td>Month</td>
<td>MBTU</td>
<td>MAX MBTU/HR</td>
<td>DAY/HR</td>
<td>PEAK ENDUSE</td>
<td>PEAK PCT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>-------------</td>
<td>--------</td>
<td>-------------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEP</td>
<td>0.17</td>
<td>0.01</td>
<td>0/ 0</td>
<td>0.00</td>
<td>0.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCT</td>
<td>0.29</td>
<td>0.02</td>
<td>0/ 0</td>
<td>0.00</td>
<td>0.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOV</td>
<td>0.61</td>
<td>0.03</td>
<td>0/ 0</td>
<td>0.00</td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEC</td>
<td>0.80</td>
<td>0.04</td>
<td>0/ 0</td>
<td>0.00</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Month</th>
<th>MBTU</th>
<th>MAX MBTU/HR</th>
<th>DAY/HR</th>
<th>PEAK ENDUSE</th>
<th>PEAK PCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEP</td>
<td>0.17</td>
<td>0.01</td>
<td>0/ 0</td>
<td>0.00</td>
<td>0.19</td>
</tr>
<tr>
<td>OCT</td>
<td>0.29</td>
<td>0.02</td>
<td>0/ 0</td>
<td>0.00</td>
<td>0.10</td>
</tr>
<tr>
<td>NOV</td>
<td>0.61</td>
<td>0.03</td>
<td>0/ 0</td>
<td>0.00</td>
<td>0.08</td>
</tr>
<tr>
<td>DEC</td>
<td>0.80</td>
<td>0.04</td>
<td>0/ 0</td>
<td>0.00</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Note:
- MBTU: Million British Thermal Units
- MAX MBTU/HR: Maximum MBTU per hour
- DAY/HR: Day/Hours
- PEAK ENDUSE: Peak End Use
- PEAK PCT: Peak Percent

Source: Monroe Community College, School of Nursing, DOE-2.2-44d5 11/02/2007 16:34:20 BDL RUN 1
<p>	MONTH	LIGHTS	TASK	MISCELLANEOUS	SPACE	SPACE	SPACE	HEAT	PUMPS	VENT	REFRIG	NT PUMP	DOMESTIC	EXTERNAL	TOTAL
JAN															
	LIGHTS	EQUIP	HEATING	COOLING	REJECT & AUX	FANS	DISPLAY	SUPPLEMENTAL	HOT WATER	USAGE	TOTAL				
FEB	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
MAR	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
APR	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
MAY	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
JUN	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
JUL	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
AUG	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
SEP	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
<table>
<thead>
<tr>
<th></th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>KWH</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MAX KW</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>DAY/HR</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>PEAK ENDUSE</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>PEAK PCT</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MAX KW</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>DAY/HR</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>PEAK ENDUSE</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>PEAK PCT</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MAX KW</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>DAY/HR</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>PEAK ENDUSE</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>PEAK PCT</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>YEARLY TRANSFORMER LOSSES =</td>
<td>0.0 KWH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Month</td>
<td>Peak Pct</td>
<td>Peak Enduse</td>
<td>Day/HR</td>
<td>Max KW</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>-------------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>JAN</td>
<td>28.3</td>
<td>0.0</td>
<td>29.0</td>
<td>0.0</td>
</tr>
<tr>
<td>FEB</td>
<td>23.1/11</td>
<td>0.0</td>
<td>23.7</td>
<td>0.0</td>
</tr>
<tr>
<td>MAR</td>
<td>38.1</td>
<td>0.0</td>
<td>20.0</td>
<td>0.0</td>
</tr>
<tr>
<td>APR</td>
<td>4595.</td>
<td>0.0</td>
<td>7401.</td>
<td>0.0</td>
</tr>
<tr>
<td>MAY</td>
<td>5882.</td>
<td>0.0</td>
<td>9850.</td>
<td>0.0</td>
</tr>
<tr>
<td>JUN</td>
<td>5127.</td>
<td>0.0</td>
<td>8070</td>
<td>0.0</td>
</tr>
<tr>
<td>JUL</td>
<td>5130.</td>
<td>0.0</td>
<td>8216.</td>
<td>0.0</td>
</tr>
<tr>
<td>AUG</td>
<td>3803.</td>
<td>0.0</td>
<td>5811.</td>
<td>0.0</td>
</tr>
</tbody>
</table>
SEP

<table>
<thead>
<tr>
<th>KWH</th>
<th>5349.</th>
<th>0.</th>
<th>8708.</th>
<th>0.</th>
<th>2492.</th>
<th>76.</th>
<th>474.</th>
<th>4875.</th>
<th>0.</th>
<th>0.</th>
<th>0.</th>
<th>222.</th>
<th>22196.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX KW</td>
<td>22.1</td>
<td>0.</td>
<td>23.0</td>
<td>0.</td>
<td>17.5</td>
<td>1.1</td>
<td>1.4</td>
<td>14.9</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.7</td>
<td>76.5</td>
</tr>
<tr>
<td>DAY/HR</td>
<td>4/11</td>
<td>0/</td>
<td>4/11</td>
<td>0/</td>
<td>5/11</td>
<td>5/11</td>
<td>4/11</td>
<td>5/ 6</td>
<td>0/</td>
<td>0/</td>
<td>0/</td>
<td>1/ 2</td>
<td>5/11</td>
</tr>
<tr>
<td>PEAK ENDUSE</td>
<td>22.1</td>
<td>0.</td>
<td>23.0</td>
<td>0.</td>
<td>17.5</td>
<td>1.1</td>
<td>0.8</td>
<td>12.1</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>PEAK PCT</td>
<td>28.9</td>
<td>0.</td>
<td>30.0</td>
<td>0.</td>
<td>22.8</td>
<td>1.4</td>
<td>1.0</td>
<td>15.8</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

OCT

<table>
<thead>
<tr>
<th>KWH</th>
<th>5882.</th>
<th>0.</th>
<th>9641.</th>
<th>0.</th>
<th>1162.</th>
<th>8.</th>
<th>546.</th>
<th>4989.</th>
<th>0.</th>
<th>0.</th>
<th>0.</th>
<th>0.</th>
<th>229.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX KW</td>
<td>22.1</td>
<td>0.</td>
<td>23.0</td>
<td>0.</td>
<td>14.0</td>
<td>0.5</td>
<td>1.3</td>
<td>13.5</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.7</td>
<td>73.7</td>
</tr>
<tr>
<td>DAY/HR</td>
<td>25/11</td>
<td>0/</td>
<td>1/11</td>
<td>0/</td>
<td>4/15</td>
<td>4/15</td>
<td>4/14</td>
<td>5/15</td>
<td>0/</td>
<td>0/</td>
<td>0/</td>
<td>0/</td>
<td>1/ 2</td>
</tr>
<tr>
<td>PEAK ENDUSE</td>
<td>22.1</td>
<td>0.</td>
<td>22.7</td>
<td>0.</td>
<td>14.0</td>
<td>0.5</td>
<td>1.3</td>
<td>13.0</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>PEAK PCT</td>
<td>30.1</td>
<td>0.</td>
<td>30.8</td>
<td>0.</td>
<td>19.0</td>
<td>0.7</td>
<td>1.8</td>
<td>17.6</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

NOV

<table>
<thead>
<tr>
<th>KWH</th>
<th>5511.</th>
<th>0.</th>
<th>8986.</th>
<th>0.</th>
<th>549.</th>
<th>0.</th>
<th>598.</th>
<th>5057.</th>
<th>0.</th>
<th>0.</th>
<th>0.</th>
<th>0.</th>
<th>302.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX KW</td>
<td>22.2</td>
<td>0.</td>
<td>23.0</td>
<td>0.</td>
<td>2.4</td>
<td>0.0</td>
<td>1.1</td>
<td>11.0</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.7</td>
<td>58.7</td>
</tr>
<tr>
<td>DAY/HR</td>
<td>23/15</td>
<td>0/</td>
<td>1/11</td>
<td>0/</td>
<td>7/14</td>
<td>0/</td>
<td>26/6</td>
<td>9/15</td>
<td>0/</td>
<td>0/</td>
<td>0/</td>
<td>0/</td>
<td>1/ 1</td>
</tr>
<tr>
<td>PEAK ENDUSE</td>
<td>22.1</td>
<td>0.</td>
<td>22.7</td>
<td>0.</td>
<td>1.8</td>
<td>0.0</td>
<td>1.1</td>
<td>11.0</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>PEAK PCT</td>
<td>37.7</td>
<td>0.</td>
<td>38.6</td>
<td>0.</td>
<td>3.1</td>
<td>0.0</td>
<td>1.9</td>
<td>18.7</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

DEC

<table>
<thead>
<tr>
<th>KWH</th>
<th>5009.</th>
<th>0.</th>
<th>8136.</th>
<th>0.</th>
<th>683.</th>
<th>0.</th>
<th>735.</th>
<th>6855.</th>
<th>0.</th>
<th>0.</th>
<th>0.</th>
<th>0.</th>
<th>312.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX KW</td>
<td>22.2</td>
<td>0.</td>
<td>23.0</td>
<td>0.</td>
<td>6.0</td>
<td>0.0</td>
<td>1.2</td>
<td>12.3</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.7</td>
<td>62.0</td>
</tr>
<tr>
<td>DAY/HR</td>
<td>13/15</td>
<td>0/</td>
<td>3/11</td>
<td>0/</td>
<td>5/13</td>
<td>0/</td>
<td>17/ 6</td>
<td>14/15</td>
<td>0/</td>
<td>0/</td>
<td>0/</td>
<td>0/</td>
<td>1/ 1</td>
</tr>
<tr>
<td>PEAK ENDUSE</td>
<td>22.1</td>
<td>0.</td>
<td>23.0</td>
<td>0.</td>
<td>5.4</td>
<td>0.0</td>
<td>1.1</td>
<td>10.4</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>PEAK PCT</td>
<td>35.7</td>
<td>0.</td>
<td>37.0</td>
<td>0.</td>
<td>8.8</td>
<td>0.0</td>
<td>1.8</td>
<td>16.9</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KWH</th>
<th>60490.</th>
<th>0.</th>
<th>97473.</th>
<th>0.</th>
<th>22671.</th>
<th>534.</th>
<th>6787.</th>
<th>64788.</th>
<th>0.</th>
<th>0.</th>
<th>0.</th>
<th>2835.</th>
<th>255580.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX KW</td>
<td>22.2</td>
<td>0.</td>
<td>23.0</td>
<td>0.</td>
<td>19.4</td>
<td>1.2</td>
<td>1.4</td>
<td>24.9</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.7</td>
<td>81.7</td>
</tr>
<tr>
<td>MON/DY</td>
<td>11/23</td>
<td>0/</td>
<td>1/23</td>
<td>0/</td>
<td>7/19</td>
<td>7/19</td>
<td>6/1</td>
<td>7/20</td>
<td>0/</td>
<td>0/</td>
<td>0/</td>
<td>0/</td>
<td>1/</td>
</tr>
<tr>
<td>PEAK ENDUSE</td>
<td>22.1</td>
<td>0.</td>
<td>22.7</td>
<td>0.</td>
<td>19.4</td>
<td>1.2</td>
<td>0.8</td>
<td>15.4</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>PEAK PCT</td>
<td>27.1</td>
<td>0.</td>
<td>27.8</td>
<td>0.</td>
<td>23.8</td>
<td>1.5</td>
<td>1.0</td>
<td>18.9</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

YEARLY TRANSFORMER LOSSES = 0.0 KWH
Light Utilization Report

Submeter 2 - Elevator

- **Weather File**: Rochester, NY
- **NYSERDA NCP7190**: LEED Design Building Model
- **Monroe Community College**: School of Nursing
- **SAIC/Energy Systems Group**: DOE-2.2-44d5
- **Date**: 11/02/2007
- **Time**: 16:34:20
- **BDL Run**: 1

Table: Light Utilization Summary

<table>
<thead>
<tr>
<th>Task</th>
<th>MISC</th>
<th>SPACE</th>
<th>SPACE</th>
<th>HEAT</th>
<th>PUMPS</th>
<th>VENT</th>
<th>REFRIG</th>
<th>HT PUMP</th>
<th>DOMEST</th>
<th>SUPPLEMENTAL</th>
<th>HOT WATER</th>
<th>USAGE</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIGHTS</td>
<td>LIGHTS</td>
<td>EQUIP</td>
<td>HEATING</td>
<td>COOLING</td>
<td>REJECT</td>
<td>& AUX</td>
<td>FANS</td>
<td>DISPLAY</td>
<td>SUPPLEM</td>
<td>HOT MTR</td>
<td>USAGE</td>
<td>EXT</td>
<td>TOTAL</td>
</tr>
</tbody>
</table>

Jan

KWH	0.0	1153.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1153.0
MAX KW	0.0	6.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.0	
PEAK PCT	0.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

Feb

KWH	0.0	1047.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1047.0
MAX KW	0.0	6.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.0	
PEAK PCT	0.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

Mar

KWH	0.0	1216.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1216.0
MAX KW	0.0	6.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.0	
PEAK PCT	0.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

Apr

KWH	0.0	1153.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1153.0
MAX KW	0.0	6.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.0	
PEAK PCT	0.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

May

KWH	0.0	1206.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1206.0
MAX KW	0.0	6.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.0	
PEAK PCT	0.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

Jun

KWH	0.0	1163.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1163.0
MAX KW	0.0	6.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.0	
PEAK PCT	0.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

Jul

KWH	0.0	1153.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1153.0
MAX KW	0.0	6.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.0	
PEAK PCT	0.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

Aug

<p>| KWH | 0.0 | 1259.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1259.0 |
| MAX KW | 0.0 | 6.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6.0 |
| PEAK PCT | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |</p>
<table>
<thead>
<tr>
<th>Month</th>
<th>KWH</th>
<th>MAX KW</th>
<th>DAY/HR</th>
<th>PEAK ENDUSE</th>
<th>PEAK PCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEP</td>
<td>0.0</td>
<td>0.0</td>
<td>6.00</td>
<td>0.0</td>
<td>1057.0</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>OCT</td>
<td>0.0</td>
<td>0.0</td>
<td>6.00</td>
<td>0.0</td>
<td>1206.0</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>NOV</td>
<td>0.0</td>
<td>0.0</td>
<td>6.00</td>
<td>0.0</td>
<td>1100.0</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>DEC</td>
<td>0.0</td>
<td>0.0</td>
<td>6.00</td>
<td>0.0</td>
<td>1110.0</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

YEARLY TRANSFORMER LOSSES = 0.0 KWH
<table>
<thead>
<tr>
<th>Month</th>
<th>PEAK PCT</th>
<th>PEAK ENDUSE</th>
<th>DAY/HR</th>
<th>THERM</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAN</td>
<td>0.0</td>
<td>0.0</td>
<td>0/0</td>
<td>0.0</td>
</tr>
<tr>
<td>MAX THERM/HR</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>FEB</td>
<td>833.0</td>
<td>0.0</td>
<td>0/0</td>
<td>4.0</td>
</tr>
<tr>
<td>MAX THERM/HR</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MAR</td>
<td>164.0</td>
<td>0.0</td>
<td>0/0</td>
<td>4.0</td>
</tr>
<tr>
<td>MAX THERM/HR</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>APR</td>
<td>374.0</td>
<td>0.0</td>
<td>0/0</td>
<td>4.0</td>
</tr>
<tr>
<td>MAX THERM/HR</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MAY</td>
<td>1.0</td>
<td>0.0</td>
<td>0/0</td>
<td>4.0</td>
</tr>
<tr>
<td>MAX THERM/HR</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>JUN</td>
<td>31.0</td>
<td>0.0</td>
<td>0/0</td>
<td>4.0</td>
</tr>
<tr>
<td>MAX THERM/HR</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>JUL</td>
<td>42.0</td>
<td>0.0</td>
<td>0/0</td>
<td>4.0</td>
</tr>
<tr>
<td>MAX THERM/HR</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>AUG</td>
<td>42.0</td>
<td>0.0</td>
<td>0/0</td>
<td>4.0</td>
</tr>
<tr>
<td>MAX THERM/HR</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Note: All values are given in specific units as per the report.
| Mon | Ther | Mon | Th
TASK	LIGHTS	MISC EQUIP	SPACE HEATING	SPACE COOLING	HEAT REJ & AUX	PUMPS & AUX	VENT DISPLAY	REFRIG SUPPL	HT PUMP SUPPL	DOMEST SUPPL	HWT SUPPL	USAGE	TOTAL	
MISC	206.4	0.0	332.7	77.4	1.8	23.2	221.1	0.0	0.0	0.0	9.7	872.3		
NATURAL-GAS	0.0	0.0	0.0	614.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	692.5		
TOTAL SITE ENERGY	1564.79 MBTU	69.2 KBTU/SQFT-YR GROSS-AREA	69.2 KBTU/SQFT-YR NET-AREA											
TOTAL SOURCE ENERGY	3309.37 MBTU	146.4 KBTU/SQFT-YR GROSS-AREA	146.4 KBTU/SQFT-YR NET-AREA											
PERCENT OF HOURS ANY SYSTEM ZONE OUTSIDE OF THROTTLING RANGE	0.0													
PERCENT OF HOURS ANY PLANT LOAD NOT SATISFIED	0.0													

NOTE: ENERGY IS APPORTIONED HOURLY TO ALL END-USE CATEGORIES.
<table>
<thead>
<tr>
<th>TASK</th>
<th>LIGHTS</th>
<th>MISC</th>
<th>SPACE LIGHTS</th>
<th>SPACE EQUIP</th>
<th>SPACE HEATING</th>
<th>SPACE COOLING</th>
<th>SPACE REJCT & AUX</th>
<th>HEAT FANS</th>
<th>REFRIG DISPLAY</th>
<th>NT PUMP SUPPLDM</th>
<th>DOMEST HOT WTR</th>
<th>USAGE</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM1</td>
<td>ELECTRICITY</td>
<td>60490.</td>
<td>0.</td>
<td>97475.</td>
<td>0.</td>
<td>22671.</td>
<td>534.</td>
<td>6787.</td>
<td>64788.</td>
<td>0.</td>
<td>0.</td>
<td>2835.</td>
<td>255580.</td>
</tr>
<tr>
<td>FM1</td>
<td>NATURAL-GAS</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>6149.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>776.</td>
<td>0.</td>
<td>6925.</td>
</tr>
</tbody>
</table>

TOTAL ELECTRICITY: 255580. KWH
TOTAL NATURAL-GAS: 6925. THERM

PERCENT OF HOURS ANY SYSTEM ZONE OUTSIDE OF THROTTLING RANGE = 0.0
PERCENT OF HOURS ANY PLANT LOAD NOT SATISFIED = 0.0

NOTE: ENERGY IS APPORTIONED HOURLY TO ALL END-USE CATEGORIES.
<table>
<thead>
<tr>
<th>METERED ENERGY</th>
<th>TOTAL CHARGE</th>
<th>VIRTUAL RATE</th>
<th>RATE USED</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESOURCE</td>
<td>METER</td>
<td>UNITS/YR</td>
<td>($)</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>RGEE-SC08</td>
<td>ELECTRICITY</td>
<td>EM1</td>
<td>255580. KWH</td>
</tr>
<tr>
<td>RGEG-SC03</td>
<td>NATURAL-GAS</td>
<td>FM1</td>
<td>6925. THERM</td>
</tr>
</tbody>
</table>

ENERGY COST/GROSS BLDG AREA: 2.04
ENERGY COST/NET BLDG AREA: 2.04
Electricity Summary

Resource: Electricity
Demand-Interval: 15
Rate-Limitation: 0.0000
Meters: EM1
Power-Factor: 0.80
Excess-KVAR-Frac: 0.75
Excess-KVAR-Chg: 0.0000

Rate-Qualifications:
- **Min-Energy:** 0.0
- **Max-Energy:** 0.0
- **Min-Demand:** 0.0
- **Max-Demand:** 0.0
- **Use-Min-Qual:** No

Metered Billing Summary:

<table>
<thead>
<tr>
<th>Month</th>
<th>Energy KWH</th>
<th>Demand KW</th>
<th>Energy Charge ($)</th>
<th>Demand Charge ($)</th>
<th>Energy CST Adj ($)</th>
<th>Taxes ($)</th>
<th>Surchrg ($)</th>
<th>Fixed Charge ($)</th>
<th>Minimum Charge ($)</th>
<th>Virtual Rate ($/Unit)</th>
<th>Total Charge ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAN</td>
<td>17313</td>
<td>58.9</td>
<td>1681</td>
<td>567</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>435</td>
<td>0</td>
<td>0.1550</td>
<td>2683</td>
</tr>
<tr>
<td>FEB</td>
<td>19247</td>
<td>59.5</td>
<td>1885</td>
<td>573</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>435</td>
<td>0</td>
<td>0.1563</td>
<td>2893</td>
</tr>
<tr>
<td>MAR</td>
<td>23047</td>
<td>59.3</td>
<td>2276</td>
<td>571</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>435</td>
<td>0</td>
<td>0.1424</td>
<td>3282</td>
</tr>
<tr>
<td>APR</td>
<td>19830</td>
<td>70.8</td>
<td>1965</td>
<td>682</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>435</td>
<td>0</td>
<td>0.1550</td>
<td>3083</td>
</tr>
<tr>
<td>MAY</td>
<td>21088</td>
<td>79.6</td>
<td>2100</td>
<td>766</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>435</td>
<td>0</td>
<td>0.1566</td>
<td>3302</td>
</tr>
<tr>
<td>JUN</td>
<td>24539</td>
<td>79.6</td>
<td>2435</td>
<td>767</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>435</td>
<td>0</td>
<td>0.1482</td>
<td>3637</td>
</tr>
<tr>
<td>JUL</td>
<td>24221</td>
<td>82.3</td>
<td>2400</td>
<td>793</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>435</td>
<td>0</td>
<td>0.1498</td>
<td>3629</td>
</tr>
<tr>
<td>AUG</td>
<td>19728</td>
<td>78.8</td>
<td>1963</td>
<td>759</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>435</td>
<td>0</td>
<td>0.1600</td>
<td>3157</td>
</tr>
<tr>
<td>SEP</td>
<td>22196</td>
<td>77.1</td>
<td>2188</td>
<td>743</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>435</td>
<td>0</td>
<td>0.1516</td>
<td>3366</td>
</tr>
<tr>
<td>OCT</td>
<td>22458</td>
<td>74.3</td>
<td>2240</td>
<td>716</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>435</td>
<td>0</td>
<td>0.1510</td>
<td>3391</td>
</tr>
<tr>
<td>NOV</td>
<td>21004</td>
<td>59.3</td>
<td>2073</td>
<td>571</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>435</td>
<td>0</td>
<td>0.1466</td>
<td>3080</td>
</tr>
<tr>
<td>DEC</td>
<td>20850</td>
<td>62.5</td>
<td>2035</td>
<td>602</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>435</td>
<td>0</td>
<td>0.1473</td>
<td>3072</td>
</tr>
</tbody>
</table>

Total: 255580
Total Energy KWH: 255580
Total Demand KW: 82.3
Total Energy Charge: 25241
Total Demand Charge: 8109
Total Energy CST Adj: 0
Total Taxes: 0
Total Surchrg: 0
Total Fixed Charge: 5225
Total Minimum Charge: 0
Total Virtual Rate ($/Unit): 0.1569
Total Charge: 38575
<table>
<thead>
<tr>
<th>MONTH</th>
<th>METERED ENERGY</th>
<th>BILLING ENERGY</th>
<th>METERED DEMAND</th>
<th>BILLING DEMAND</th>
<th>ENERGY CHARGE ($)</th>
<th>DEMAND CHARGE ($)</th>
<th>ENERGY CST ADJ ($)</th>
<th>TAXES ($)</th>
<th>SURCHRG ($)</th>
<th>FIXED CHARGE ($)</th>
<th>MINIMUM CHARGE ($)</th>
<th>VIRTUAL RATE CHARGE ($)</th>
<th>TOTAL CHARGE ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAN</td>
<td>1573</td>
<td>1573</td>
<td>4.0</td>
<td>4.0</td>
<td>1612</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>1.0374</td>
<td>1631</td>
</tr>
<tr>
<td>FEB</td>
<td>1315</td>
<td>1315</td>
<td>4.7</td>
<td>4.7</td>
<td>1352</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>1.0433</td>
<td>1372</td>
</tr>
<tr>
<td>MAR</td>
<td>909</td>
<td>909</td>
<td>3.5</td>
<td>3.5</td>
<td>944</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>1.0594</td>
<td>963</td>
</tr>
<tr>
<td>APR</td>
<td>446</td>
<td>446</td>
<td>3.1</td>
<td>3.1</td>
<td>477</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>1.1138</td>
<td>496</td>
</tr>
<tr>
<td>MAY</td>
<td>234</td>
<td>234</td>
<td>2.6</td>
<td>2.6</td>
<td>259</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>1.1883</td>
<td>278</td>
</tr>
<tr>
<td>JUN</td>
<td>119</td>
<td>119</td>
<td>0.7</td>
<td>0.7</td>
<td>130</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>1.2543</td>
<td>149</td>
</tr>
<tr>
<td>JUL</td>
<td>90</td>
<td>90</td>
<td>1.1</td>
<td>1.1</td>
<td>98</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>1.2974</td>
<td>117</td>
</tr>
<tr>
<td>AUG</td>
<td>102</td>
<td>102</td>
<td>0.6</td>
<td>0.6</td>
<td>110</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>1.2773</td>
<td>130</td>
</tr>
<tr>
<td>SEP</td>
<td>167</td>
<td>167</td>
<td>1.2</td>
<td>1.2</td>
<td>184</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>1.2157</td>
<td>203</td>
</tr>
<tr>
<td>OCT</td>
<td>294</td>
<td>294</td>
<td>2.4</td>
<td>2.4</td>
<td>324</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>1.1690</td>
<td>344</td>
</tr>
<tr>
<td>NOV</td>
<td>609</td>
<td>609</td>
<td>3.2</td>
<td>3.2</td>
<td>642</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>1.0852</td>
<td>661</td>
</tr>
<tr>
<td>DEC</td>
<td>1068</td>
<td>1068</td>
<td>4.3</td>
<td>4.3</td>
<td>1104</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>1.0517</td>
<td>1123</td>
</tr>
<tr>
<td>TOTAL</td>
<td>6925</td>
<td>6925</td>
<td>4.7</td>
<td>4.7</td>
<td>7235</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>1.0783</td>
<td>7467</td>
</tr>
</tbody>
</table>
Output for LEED Baseline Model
Light Equipment Summary

<table>
<thead>
<tr>
<th>SPACE</th>
<th>FLOOR SPACE</th>
<th>LIGHTS EQUIP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SPACE MULTIPLIER</td>
<td>(WATT / INFILTRATION [WATT / (sqft)])</td>
</tr>
<tr>
<td>001-191-COR</td>
<td>1.0</td>
<td>0.92 3.0 0.07</td>
</tr>
<tr>
<td>002-195-RR</td>
<td>1.0</td>
<td>1.08 1.0 0.07</td>
</tr>
<tr>
<td>003-199-STD</td>
<td>1.0</td>
<td>1.14 1.0 0.07</td>
</tr>
<tr>
<td>004-191-COR</td>
<td>1.0</td>
<td>0.89 3.0 0.07</td>
</tr>
<tr>
<td>005-104-CLA</td>
<td>1.0</td>
<td>0.97 17.0 0.49</td>
</tr>
<tr>
<td>006-108-CLA</td>
<td>1.0</td>
<td>0.97 17.0 0.49</td>
</tr>
<tr>
<td>007-110-CLAB</td>
<td>1.0</td>
<td>1.34 8.0 0.75</td>
</tr>
<tr>
<td>008-117-CLAB</td>
<td>1.0</td>
<td>1.34 8.0 0.75</td>
</tr>
<tr>
<td>009-112-CLAB</td>
<td>1.0</td>
<td>1.27 12.0 0.71</td>
</tr>
<tr>
<td>010-125-CLAB</td>
<td>1.0</td>
<td>1.27 12.0 0.71</td>
</tr>
<tr>
<td>011-130-OFC</td>
<td>1.0</td>
<td>1.50 6.0 1.46</td>
</tr>
<tr>
<td>012-126-OFC</td>
<td>1.0</td>
<td>0.92 1.0 0.84</td>
</tr>
<tr>
<td>013-120-OFC</td>
<td>1.0</td>
<td>1.32 5.0 0.98</td>
</tr>
<tr>
<td>014-199-DATA</td>
<td>1.0</td>
<td>1.51 1.0 4.14</td>
</tr>
</tbody>
</table>

Building Totals

- Spaces on Floor: Floor-1
 - BUILDING TOTALS: 203.0

- Spaces on Floor: Floor-2
 - BUILDING TOTALS: 22599.0 361438.0
<table>
<thead>
<tr>
<th></th>
<th>LIGHTS</th>
<th>TASKS</th>
<th>MISCELLANEOUS</th>
<th>SPACE</th>
<th>SPACE</th>
<th>HEAT</th>
<th>PUMPS</th>
<th>VENT</th>
<th>REFRIG</th>
<th>HT PUMP</th>
<th>DOMEST</th>
<th>EXT</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAN</td>
<td>4344</td>
<td>0</td>
<td>5487</td>
<td>183</td>
<td>0</td>
<td>1004</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>312</td>
<td>24332</td>
<td></td>
</tr>
<tr>
<td>MAX KW</td>
<td>27.1</td>
<td>0</td>
<td>23.0</td>
<td>0.8</td>
<td>0</td>
<td>1.3</td>
<td>21.0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.7</td>
</tr>
<tr>
<td>DAY/HR</td>
<td>23/11</td>
<td>0/0</td>
<td>23/11</td>
<td>0/0</td>
<td>30/15</td>
<td>0/0</td>
<td>1/1</td>
<td>1/10</td>
<td>0/0</td>
<td>0/0</td>
<td>1/1</td>
<td>30/15</td>
</tr>
<tr>
<td>PEAK ENDUSE</td>
<td>27.1</td>
<td>0.0</td>
<td>23.0</td>
<td>0.8</td>
<td>0.8</td>
<td>1.3</td>
<td>21.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>PEAK PCT</td>
<td>37.0</td>
<td>0.0</td>
<td>31.3</td>
<td>1.1</td>
<td>0.0</td>
<td>1.8</td>
<td>28.7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>FEB</td>
<td>5516</td>
<td>0</td>
<td>7439</td>
<td>177</td>
<td>0</td>
<td>894</td>
<td>11068</td>
<td>0.0</td>
<td>0.0</td>
<td>282</td>
<td>25376</td>
<td></td>
</tr>
<tr>
<td>MAX KW</td>
<td>27.1</td>
<td>0.0</td>
<td>23.0</td>
<td>1.8</td>
<td>0.0</td>
<td>1.3</td>
<td>21.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.7</td>
<td>73.2</td>
</tr>
<tr>
<td>DAY/HR</td>
<td>1/11</td>
<td>0/0</td>
<td>1/11</td>
<td>2/15</td>
<td>0/0</td>
<td>1/1</td>
<td>1/7</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>1/1</td>
<td>7/15</td>
</tr>
<tr>
<td>PEAK ENDUSE</td>
<td>27.1</td>
<td>0.0</td>
<td>23.0</td>
<td>0.8</td>
<td>0.8</td>
<td>1.3</td>
<td>21.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>PEAK PCT</td>
<td>37.0</td>
<td>0.0</td>
<td>31.3</td>
<td>1.0</td>
<td>0.0</td>
<td>1.8</td>
<td>28.7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>MAR</td>
<td>7099</td>
<td>0</td>
<td>9908</td>
<td>257</td>
<td>0</td>
<td>944</td>
<td>11501</td>
<td>0.0</td>
<td>0.0</td>
<td>229</td>
<td>29939</td>
<td></td>
</tr>
<tr>
<td>MAX KW</td>
<td>27.1</td>
<td>0.0</td>
<td>23.0</td>
<td>7.4</td>
<td>0.0</td>
<td>1.3</td>
<td>21.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.7</td>
<td>75.6</td>
</tr>
<tr>
<td>DAY/HR</td>
<td>1/11</td>
<td>0/0</td>
<td>1/11</td>
<td>31/14</td>
<td>0/0</td>
<td>1/1</td>
<td>1/7</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>1/1</td>
<td>30/15</td>
</tr>
<tr>
<td>PEAK ENDUSE</td>
<td>27.1</td>
<td>0.0</td>
<td>23.0</td>
<td>4.5</td>
<td>0.0</td>
<td>0.0</td>
<td>21.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>PEAK PCT</td>
<td>35.9</td>
<td>0.0</td>
<td>30.4</td>
<td>6.0</td>
<td>0.0</td>
<td>0.0</td>
<td>27.8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>APR</td>
<td>5896</td>
<td>0</td>
<td>7941</td>
<td>1190</td>
<td>0</td>
<td>559</td>
<td>10291</td>
<td>0.0</td>
<td>0.0</td>
<td>222</td>
<td>26101</td>
<td></td>
</tr>
<tr>
<td>MAX KW</td>
<td>27.1</td>
<td>0.0</td>
<td>23.0</td>
<td>21.0</td>
<td>0.0</td>
<td>1.3</td>
<td>21.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.7</td>
<td>92.1</td>
</tr>
<tr>
<td>DAY/HR</td>
<td>2/11</td>
<td>0/0</td>
<td>2/11</td>
<td>4/14</td>
<td>0/0</td>
<td>1/2</td>
<td>1/10</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>1/2</td>
<td>4/15</td>
</tr>
<tr>
<td>PEAK ENDUSE</td>
<td>27.1</td>
<td>0.0</td>
<td>23.0</td>
<td>21.0</td>
<td>0.0</td>
<td>0.0</td>
<td>21.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>PEAK PCT</td>
<td>29.5</td>
<td>0.0</td>
<td>24.9</td>
<td>22.8</td>
<td>0.0</td>
<td>0.0</td>
<td>22.9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>MAY</td>
<td>6172</td>
<td>0</td>
<td>8110</td>
<td>2843</td>
<td>0</td>
<td>365</td>
<td>10079</td>
<td>0.0</td>
<td>0.0</td>
<td>229</td>
<td>27998</td>
<td></td>
</tr>
<tr>
<td>MAX KW</td>
<td>27.1</td>
<td>0.0</td>
<td>23.0</td>
<td>32.4</td>
<td>0.0</td>
<td>1.3</td>
<td>21.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.7</td>
<td>102.8</td>
</tr>
<tr>
<td>DAY/HR</td>
<td>1/11</td>
<td>0/0</td>
<td>1/11</td>
<td>9/14</td>
<td>0/0</td>
<td>1/2</td>
<td>1/7</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>1/2</td>
<td>9/15</td>
</tr>
<tr>
<td>PEAK ENDUSE</td>
<td>27.1</td>
<td>0.0</td>
<td>23.0</td>
<td>31.7</td>
<td>0.0</td>
<td>0.0</td>
<td>21.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>PEAK PCT</td>
<td>26.4</td>
<td>0.0</td>
<td>22.3</td>
<td>38.8</td>
<td>0.0</td>
<td>0.0</td>
<td>20.6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>JUN</td>
<td>6813</td>
<td>0</td>
<td>9337</td>
<td>6274</td>
<td>0</td>
<td>31</td>
<td>9931</td>
<td>0.0</td>
<td>0.0</td>
<td>161</td>
<td>32547</td>
<td></td>
</tr>
<tr>
<td>MAX KW</td>
<td>27.1</td>
<td>0.0</td>
<td>23.0</td>
<td>34.6</td>
<td>0.0</td>
<td>1.3</td>
<td>21.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.7</td>
<td>105.7</td>
</tr>
<tr>
<td>DAY/HR</td>
<td>1/11</td>
<td>0/0</td>
<td>1/11</td>
<td>11/15</td>
<td>0/0</td>
<td>3/1</td>
<td>1/7</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>1/2</td>
<td>11/15</td>
</tr>
<tr>
<td>PEAK ENDUSE</td>
<td>27.1</td>
<td>0.0</td>
<td>23.0</td>
<td>34.6</td>
<td>0.0</td>
<td>0.0</td>
<td>21.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>PEAK PCT</td>
<td>25.7</td>
<td>0.0</td>
<td>21.7</td>
<td>32.7</td>
<td>0.0</td>
<td>0.0</td>
<td>19.9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>JUL</td>
<td>6177</td>
<td>0</td>
<td>8258</td>
<td>7192</td>
<td>0</td>
<td>0</td>
<td>10021</td>
<td>0.0</td>
<td>0.0</td>
<td>167</td>
<td>31815</td>
<td></td>
</tr>
<tr>
<td>MAX KW</td>
<td>27.1</td>
<td>0.0</td>
<td>23.0</td>
<td>35.8</td>
<td>0.0</td>
<td>0.0</td>
<td>21.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.7</td>
<td>106.9</td>
</tr>
<tr>
<td>DAY/HR</td>
<td>9/11</td>
<td>0/0</td>
<td>9/11</td>
<td>30/15</td>
<td>0/0</td>
<td>1/10</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>1/2</td>
<td>30/15</td>
</tr>
<tr>
<td>PEAK ENDUSE</td>
<td>27.1</td>
<td>0.0</td>
<td>23.0</td>
<td>35.8</td>
<td>0.0</td>
<td>0.0</td>
<td>21.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>PEAK PCT</td>
<td>25.6</td>
<td>0.0</td>
<td>22.5</td>
<td>30.2</td>
<td>0.0</td>
<td>0.0</td>
<td>20.6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

Notes
- **Lighting**: LIGHTS
- **Miscellaneous**: LIGHTS
- **Space**: EQUIP
- **Space HEATING**: SPACE
- **Space COOLING**: SPACE
- **Heat**: HEAT
- **Pumps**: PUMPS
- **Ventilation**: VENT
- **Refrigeration**: REFRIG
- **HT Pump**: HT PUMP
- **Domestic Hot Water**: DOMEST
- **Ext**: EXT
- **Total**: TOTAL
September

<table>
<thead>
<tr>
<th>KWH</th>
<th>0.</th>
<th>8757.</th>
<th>0.</th>
<th>4019.</th>
<th>0.</th>
<th>128.</th>
<th>9541.</th>
<th>0.</th>
<th>0.</th>
<th>0.</th>
<th>222.</th>
<th>29116.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX KW</td>
<td>27.1</td>
<td>0.0</td>
<td>23.0</td>
<td>0.0</td>
<td>35.9</td>
<td>0.0</td>
<td>1.3</td>
<td>21.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.7</td>
<td>107.0</td>
</tr>
<tr>
<td>DAY/HR</td>
<td>4/11</td>
<td>0/0</td>
<td>4/11</td>
<td>0/0</td>
<td>4/15</td>
<td>0/0</td>
<td>4/15</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>1/2</td>
<td>4/15</td>
</tr>
<tr>
<td>PEAK ENDUSE</td>
<td>27.1</td>
<td>0.0</td>
<td>23.0</td>
<td>0.0</td>
<td>35.9</td>
<td>0.0</td>
<td>0.8</td>
<td>21.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>PEAK PCT</td>
<td>25.3</td>
<td>0.0</td>
<td>21.4</td>
<td>0.0</td>
<td>33.6</td>
<td>0.0</td>
<td>0.0</td>
<td>19.7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

October

<table>
<thead>
<tr>
<th>KWH</th>
<th>0.</th>
<th>9697.</th>
<th>0.</th>
<th>1542.</th>
<th>0.</th>
<th>528.</th>
<th>10119.</th>
<th>0.</th>
<th>0.</th>
<th>0.</th>
<th>229.</th>
<th>29208.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX KW</td>
<td>27.1</td>
<td>0.0</td>
<td>23.0</td>
<td>0.0</td>
<td>23.7</td>
<td>0.0</td>
<td>1.3</td>
<td>21.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>77.2</td>
</tr>
<tr>
<td>DAY/HR</td>
<td>1/11</td>
<td>0/0</td>
<td>1/11</td>
<td>0/0</td>
<td>4/17</td>
<td>0/0</td>
<td>4/17</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>1/2</td>
<td>4/17</td>
</tr>
<tr>
<td>PEAK ENDUSE</td>
<td>27.1</td>
<td>0.0</td>
<td>23.0</td>
<td>0.0</td>
<td>23.5</td>
<td>0.0</td>
<td>0.0</td>
<td>21.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>PEAK PCT</td>
<td>28.7</td>
<td>0.0</td>
<td>24.3</td>
<td>0.0</td>
<td>24.8</td>
<td>0.0</td>
<td>0.0</td>
<td>22.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

November

<table>
<thead>
<tr>
<th>KWH</th>
<th>0.</th>
<th>9037.</th>
<th>0.</th>
<th>241.</th>
<th>0.</th>
<th>882.</th>
<th>10681.</th>
<th>0.</th>
<th>0.</th>
<th>0.</th>
<th>302.</th>
<th>27774.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX KW</td>
<td>27.1</td>
<td>0.0</td>
<td>23.0</td>
<td>0.0</td>
<td>6.1</td>
<td>0.0</td>
<td>1.3</td>
<td>21.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>77.2</td>
</tr>
<tr>
<td>DAY/HR</td>
<td>1/11</td>
<td>0/0</td>
<td>1/11</td>
<td>0/0</td>
<td>7/15</td>
<td>0/0</td>
<td>7/15</td>
<td>0/0</td>
<td>1/1</td>
<td>1/7</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>PEAK ENDUSE</td>
<td>27.1</td>
<td>0.0</td>
<td>23.0</td>
<td>0.0</td>
<td>6.1</td>
<td>0.0</td>
<td>0.0</td>
<td>21.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>PEAK PCT</td>
<td>35.1</td>
<td>0.0</td>
<td>29.7</td>
<td>0.0</td>
<td>7.9</td>
<td>0.0</td>
<td>0.0</td>
<td>27.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

December

<table>
<thead>
<tr>
<th>KWH</th>
<th>0.</th>
<th>8179.</th>
<th>0.</th>
<th>277.</th>
<th>0.</th>
<th>930.</th>
<th>11803.</th>
<th>0.</th>
<th>0.</th>
<th>0.</th>
<th>312.</th>
<th>27502.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX KW</td>
<td>27.1</td>
<td>0.0</td>
<td>23.0</td>
<td>0.0</td>
<td>18.5</td>
<td>0.0</td>
<td>1.3</td>
<td>21.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>80.0</td>
</tr>
<tr>
<td>DAY/HR</td>
<td>3/11</td>
<td>0/0</td>
<td>3/11</td>
<td>0/0</td>
<td>5/14</td>
<td>0/0</td>
<td>5/14</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>1/6</td>
<td>5/11</td>
</tr>
<tr>
<td>PEAK ENDUSE</td>
<td>27.1</td>
<td>0.0</td>
<td>23.0</td>
<td>0.0</td>
<td>8.9</td>
<td>0.0</td>
<td>0.0</td>
<td>21.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>PEAK PCT</td>
<td>33.9</td>
<td>0.0</td>
<td>28.7</td>
<td>0.0</td>
<td>11.1</td>
<td>0.0</td>
<td>0.0</td>
<td>26.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Yearly Summary

<table>
<thead>
<tr>
<th>KWH</th>
<th>0.</th>
<th>72718.</th>
<th>0.</th>
<th>29179.</th>
<th>0.</th>
<th>6266.</th>
<th>128093.</th>
<th>0.</th>
<th>0.</th>
<th>0.</th>
<th>2835.</th>
<th>337072.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX KW</td>
<td>27.1</td>
<td>0.0</td>
<td>23.0</td>
<td>0.0</td>
<td>35.9</td>
<td>0.0</td>
<td>1.3</td>
<td>21.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>107.0</td>
</tr>
<tr>
<td>DAY/HR</td>
<td>1/23</td>
<td>0/0</td>
<td>1/23</td>
<td>0/0</td>
<td>9/4</td>
<td>0/0</td>
<td>9/4</td>
<td>0/0</td>
<td>1/1</td>
<td>1/1</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>PEAK ENDUSE</td>
<td>27.1</td>
<td>0.0</td>
<td>23.0</td>
<td>0.0</td>
<td>35.9</td>
<td>0.0</td>
<td>0.0</td>
<td>21.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>PEAK PCT</td>
<td>25.3</td>
<td>0.0</td>
<td>21.4</td>
<td>0.0</td>
<td>33.6</td>
<td>0.0</td>
<td>0.0</td>
<td>19.7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Month</td>
<td>Net BTU/HR</td>
<td>Max BTU/HR</td>
<td>Peak Enduse</td>
<td>Day/HR</td>
<td>Max BTU</td>
<td>Peak Enduse</td>
<td>Peak Pct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>------------</td>
<td>-------------</td>
<td>--------</td>
<td>---------</td>
<td>-------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>JAN</td>
<td>0.00</td>
<td>0.00</td>
<td>100.00</td>
<td>0/0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEB</td>
<td>0.00</td>
<td>0.00</td>
<td>100.00</td>
<td>0/0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAR</td>
<td>0.00</td>
<td>0.00</td>
<td>100.00</td>
<td>0/0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APR</td>
<td>0.00</td>
<td>0.00</td>
<td>100.00</td>
<td>0/0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAY</td>
<td>0.00</td>
<td>0.00</td>
<td>100.00</td>
<td>0/0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUN</td>
<td>0.00</td>
<td>0.00</td>
<td>100.00</td>
<td>0/0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUL</td>
<td>0.00</td>
<td>0.00</td>
<td>100.00</td>
<td>0/0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUG</td>
<td>0.00</td>
<td>0.00</td>
<td>100.00</td>
<td>0/0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SEP

<table>
<thead>
<tr>
<th>MBTU</th>
<th>0.</th>
<th>0.</th>
<th>0.</th>
<th>2.</th>
<th>0.</th>
<th>0.</th>
<th>0.</th>
<th>0.</th>
<th>0.</th>
<th>0.</th>
<th>5.</th>
<th>0.</th>
<th>7.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX MBTU/HR</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
</tr>
<tr>
<td>DAY/HR</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>21/7</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>21/0</td>
<td>0/0</td>
<td>21/7</td>
<td></td>
</tr>
<tr>
<td>PEAK ENDUSE</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>PEAK PCT</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>97.8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.2</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

OCT

<table>
<thead>
<tr>
<th>MBTU</th>
<th>0.</th>
<th>0.</th>
<th>0.</th>
<th>15.</th>
<th>0.</th>
<th>0.</th>
<th>0.</th>
<th>0.</th>
<th>0.</th>
<th>0.</th>
<th>6.</th>
<th>0.</th>
<th>21.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX MBTU/HR</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>19/10</td>
<td>0/0</td>
<td>29/6</td>
</tr>
<tr>
<td>DAY/HR</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>29/6</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>PEAK ENDUSE</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>PEAK PCT</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>99.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.9</td>
<td>0.0</td>
</tr>
</tbody>
</table>

NOV

<table>
<thead>
<tr>
<th>MBTU</th>
<th>0.</th>
<th>0.</th>
<th>0.</th>
<th>66.</th>
<th>0.</th>
<th>0.</th>
<th>0.</th>
<th>0.</th>
<th>0.</th>
<th>0.</th>
<th>6.</th>
<th>0.</th>
<th>72.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX MBTU/HR</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>DAY/HR</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>26/7</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>PEAK ENDUSE</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>PEAK PCT</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>99.4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

DEC

<table>
<thead>
<tr>
<th>MBTU</th>
<th>0.</th>
<th>0.</th>
<th>0.</th>
<th>121.</th>
<th>0.</th>
<th>0.</th>
<th>0.</th>
<th>0.</th>
<th>0.</th>
<th>0.</th>
<th>7.</th>
<th>0.</th>
<th>128.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX MBTU/HR</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>DAY/HR</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>17/7</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>31/10</td>
<td>0/0</td>
<td>17/7</td>
</tr>
<tr>
<td>PEAK ENDUSE</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>PEAK PCT</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>99.6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

###全年

<table>
<thead>
<tr>
<th>MBTU</th>
<th>0.</th>
<th>0.</th>
<th>0.</th>
<th>674.</th>
<th>0.</th>
<th>0.</th>
<th>0.</th>
<th>0.</th>
<th>0.</th>
<th>0.</th>
<th>77.</th>
<th>0.</th>
<th>752.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX MBTU/HR</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MON/DY</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>2/12</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>PEAK ENDUSE</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>PEAK PCT</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>99.6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Month</td>
<td>TASK LIGHTS</td>
<td>MISC LIGHTS</td>
<td>SPACE EQUIP</td>
<td>SPACE HEATING</td>
<td>SPACE COOLING</td>
<td>REJECT & AUX</td>
<td>FANS HEAT</td>
<td>VENT PUMPS</td>
<td>REFRIG VENT</td>
<td>NT PUMP</td>
<td>DOMEST SUPPLY</td>
<td>EXT HOSE</td>
<td>USAGE</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-----------</td>
<td>------------</td>
<td>-------------</td>
<td>---------</td>
<td>----------------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td>LIGHTS</td>
<td>LIGHTS</td>
<td>SPACE</td>
<td>SPACE</td>
<td>HEAT</td>
<td>PUMPS</td>
<td>VENT</td>
<td>REFRIG</td>
<td>HT PUMP</td>
<td>DOMEST</td>
<td>SUPPLEMENT</td>
<td>HOT WATER</td>
<td>USAGE</td>
</tr>
<tr>
<td></td>
<td>------</td>
<td>------</td>
<td>-----------</td>
<td>----------</td>
<td>------</td>
<td>-------</td>
<td>------</td>
<td>-------</td>
<td>--------</td>
<td>---------</td>
<td>----------------</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>Month</td>
<td>KWH</td>
<td>MAX KW</td>
<td>DAY/HR</td>
<td>PEAK ENDUSE</td>
<td>PEAK PCT</td>
<td>YEARLY TRANSFORMER LOSSES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>-------------</td>
<td>----------</td>
<td>---------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEP</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCT</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOV</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEC</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

YEARLY TRANSFORMER LOSSES = 0.0 KWH
<table>
<thead>
<tr>
<th>Month</th>
<th>PEAK PCT</th>
<th>PEAK ENDUSE</th>
<th>DAY/HR</th>
<th>MAX KW</th>
<th>KWH</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAN</td>
<td>26.6</td>
<td>22.5</td>
<td>1/11</td>
<td>27.1</td>
<td>4526</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>30.2</td>
<td>0.0</td>
<td>3/15</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0/0</td>
<td>20.6</td>
<td>0.0</td>
</tr>
<tr>
<td>FEB</td>
<td>27.1</td>
<td>0.0</td>
<td>23/11</td>
<td>0.0</td>
<td>27.1</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>30.8</td>
<td>0.0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MAR</td>
<td>37.0</td>
<td>0.0</td>
<td>31/14</td>
<td>0.0</td>
<td>5516</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>1.8</td>
<td>0.0</td>
<td>1/1</td>
<td>28.7</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>APR</td>
<td>37.0</td>
<td>0.0</td>
<td>31/14</td>
<td>0.0</td>
<td>5896</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>1.8</td>
<td>0.0</td>
<td>1/1</td>
<td>28.7</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MAY</td>
<td>37.0</td>
<td>0.0</td>
<td>31/14</td>
<td>0.0</td>
<td>6172</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>1.8</td>
<td>0.0</td>
<td>1/1</td>
<td>28.7</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>JUN</td>
<td>37.0</td>
<td>0.0</td>
<td>31/14</td>
<td>0.0</td>
<td>6813</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>1.8</td>
<td>0.0</td>
<td>1/1</td>
<td>28.7</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>JUL</td>
<td>37.0</td>
<td>0.0</td>
<td>31/14</td>
<td>0.0</td>
<td>6177</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>1.8</td>
<td>0.0</td>
<td>1/1</td>
<td>28.7</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>AUG</td>
<td>37.0</td>
<td>0.0</td>
<td>31/14</td>
<td>0.0</td>
<td>4526</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>1.8</td>
<td>0.0</td>
<td>1/1</td>
<td>28.7</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>SEP</td>
<td>37.0</td>
<td>0.0</td>
<td>31/14</td>
<td>0.0</td>
<td>5896</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>1.8</td>
<td>0.0</td>
<td>1/1</td>
<td>28.7</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0/0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Month</td>
<td>KWH</td>
<td>MAX KW</td>
<td>DAY/HR</td>
<td>PEAK ENDUSE</td>
<td>PEAK PCT</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>--------</td>
<td>--------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>SEP</td>
<td>6448.0</td>
<td>0.0</td>
<td>8757.0</td>
<td>0.0</td>
<td>4019.0</td>
</tr>
<tr>
<td></td>
<td>27.1</td>
<td>0.0</td>
<td>23.0</td>
<td>0.0</td>
<td>35.9</td>
</tr>
<tr>
<td></td>
<td>4/11</td>
<td>0.0</td>
<td>4/11</td>
<td>0.0</td>
<td>4/15</td>
</tr>
<tr>
<td></td>
<td>27.1</td>
<td>0.0</td>
<td>23.0</td>
<td>0.0</td>
<td>35.9</td>
</tr>
<tr>
<td></td>
<td>25.3</td>
<td>0.0</td>
<td>21.4</td>
<td>0.0</td>
<td>33.6</td>
</tr>
<tr>
<td>OCT</td>
<td>7094.0</td>
<td>0.0</td>
<td>9697.0</td>
<td>0.0</td>
<td>1542.0</td>
</tr>
<tr>
<td></td>
<td>27.1</td>
<td>0.0</td>
<td>23.0</td>
<td>0.0</td>
<td>23.7</td>
</tr>
<tr>
<td></td>
<td>1/11</td>
<td>0.0</td>
<td>1/11</td>
<td>0.0</td>
<td>4/17</td>
</tr>
<tr>
<td></td>
<td>27.1</td>
<td>0.0</td>
<td>23.0</td>
<td>0.0</td>
<td>23.5</td>
</tr>
<tr>
<td></td>
<td>28.7</td>
<td>0.0</td>
<td>24.3</td>
<td>0.0</td>
<td>24.8</td>
</tr>
<tr>
<td>NOV</td>
<td>6631.0</td>
<td>0.0</td>
<td>9037.0</td>
<td>0.0</td>
<td>241.0</td>
</tr>
<tr>
<td></td>
<td>27.1</td>
<td>0.0</td>
<td>23.0</td>
<td>0.0</td>
<td>6.1</td>
</tr>
<tr>
<td></td>
<td>1/11</td>
<td>0.0</td>
<td>1/11</td>
<td>0.0</td>
<td>7/15</td>
</tr>
<tr>
<td></td>
<td>27.1</td>
<td>0.0</td>
<td>23.0</td>
<td>0.0</td>
<td>6.1</td>
</tr>
<tr>
<td></td>
<td>35.1</td>
<td>0.0</td>
<td>29.7</td>
<td>0.0</td>
<td>7.9</td>
</tr>
<tr>
<td>DEC</td>
<td>6000.0</td>
<td>0.0</td>
<td>8179.0</td>
<td>0.0</td>
<td>277.0</td>
</tr>
<tr>
<td></td>
<td>27.1</td>
<td>0.0</td>
<td>23.0</td>
<td>0.0</td>
<td>18.5</td>
</tr>
<tr>
<td></td>
<td>3/11</td>
<td>0.0</td>
<td>3/11</td>
<td>0.0</td>
<td>5/14</td>
</tr>
<tr>
<td></td>
<td>27.1</td>
<td>0.0</td>
<td>23.0</td>
<td>0.0</td>
<td>8.9</td>
</tr>
<tr>
<td></td>
<td>33.9</td>
<td>0.0</td>
<td>28.7</td>
<td>0.0</td>
<td>11.1</td>
</tr>
</tbody>
</table>

YEARLY TRANSFORMER LOSSES = 0.0 KWH
<table>
<thead>
<tr>
<th>Task</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lights</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MISC</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Space</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Space</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Heat</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Pumps</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Vent</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Refriger</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>HTPump</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Domestic</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Ext</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Month</td>
<td>kWh</td>
<td>Max kW</td>
<td>Day/Hr</td>
<td>Peak Enduse</td>
<td>Peak Pct</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>-------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>SEP</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>OCT</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>NOV</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>DEC</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

YEARLY TRANSFORMER LOSSES = 0.0 kWh
<table>
<thead>
<tr>
<th>Month</th>
<th>THERM</th>
<th>MAX THERM/HR</th>
<th>PEAK ENDUSE</th>
<th>PEAK PCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEP</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>17.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>52.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MAX THERM/HR</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>DAY/HR</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>21/7</td>
</tr>
<tr>
<td>PEAK ENDUSE</td>
<td>0.0</td>
<td>0.0</td>
<td>1.1</td>
<td>0.0</td>
</tr>
<tr>
<td>PEAK PCT</td>
<td>0.0</td>
<td>0.0</td>
<td>97.8</td>
<td>0.0</td>
</tr>
<tr>
<td>OCT</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>61.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MAX THERM/HR</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>DAY/HR</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>29/6</td>
</tr>
<tr>
<td>PEAK ENDUSE</td>
<td>0.0</td>
<td>0.0</td>
<td>2.7</td>
<td>0.0</td>
</tr>
<tr>
<td>PEAK PCT</td>
<td>0.0</td>
<td>0.0</td>
<td>99.1</td>
<td>0.0</td>
</tr>
<tr>
<td>NOV</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>60.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MAX THERM/HR</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>DAY/HR</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>26/7</td>
</tr>
<tr>
<td>PEAK ENDUSE</td>
<td>0.0</td>
<td>0.0</td>
<td>3.8</td>
<td>0.0</td>
</tr>
<tr>
<td>PEAK PCT</td>
<td>0.0</td>
<td>0.0</td>
<td>99.4</td>
<td>0.0</td>
</tr>
<tr>
<td>DEC</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>65.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MAX THERM/HR</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>DAY/HR</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>17/7</td>
</tr>
<tr>
<td>PEAK ENDUSE</td>
<td>0.0</td>
<td>0.0</td>
<td>5.6</td>
<td>0.0</td>
</tr>
<tr>
<td>PEAK PCT</td>
<td>0.0</td>
<td>0.0</td>
<td>99.6</td>
<td>0.0</td>
</tr>
<tr>
<td>THERM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>774.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MAX THERM/HR</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MON/DY</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>2/12</td>
</tr>
<tr>
<td>PEAK ENDUSE</td>
<td>0.0</td>
<td>0.0</td>
<td>6.0</td>
<td>0.0</td>
</tr>
<tr>
<td>PEAK PCT</td>
<td>0.0</td>
<td>0.0</td>
<td>99.6</td>
<td>0.0</td>
</tr>
<tr>
<td>Task</td>
<td>MISC</td>
<td>SPACE</td>
<td>SPACE</td>
<td>HEAT</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EM1</td>
<td>LIGHTS</td>
<td>LIGHTS</td>
<td>EQUIP</td>
<td>HEATING</td>
</tr>
<tr>
<td></td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>MBTU</td>
<td>248.2</td>
<td>0.0</td>
<td>334.4</td>
<td>0.0</td>
</tr>
<tr>
<td>FM1</td>
<td>NATURAL-GAS</td>
<td>MBTU</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>MBTU</td>
<td>248.2</td>
<td>0.0</td>
<td>334.4</td>
<td>674.4</td>
</tr>
</tbody>
</table>

Total Site Energy: 1902.28 MBTU
Total Source Energy: 4203.11 MBTU

PERCENT OF HOURS ANY SYSTEM ZONE OUTSIDE OF THROTTLING RANGE = 0.3
PERCENT OF HOURS ANY PLANT LOAD NOT SATISFIED = 0.0

NOTE: ENERGY IS APPORTIONED HOURLY TO ALL END-USE CATEGORIES.
<table>
<thead>
<tr>
<th>TASK</th>
<th>LIGHTS</th>
<th>MISC</th>
<th>SPACE</th>
<th>HEAT</th>
<th>PUMPS</th>
<th>VENT</th>
<th>REFRIG</th>
<th>HT PUMP</th>
<th>DOMEST</th>
<th>EXT</th>
<th>USAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIGHTS</td>
<td>72718.</td>
<td>0.</td>
<td>97981.</td>
<td>0.</td>
<td>29179.</td>
<td>0.</td>
<td>6266.</td>
<td>128693.</td>
<td>0.</td>
<td>0.</td>
<td>2835.</td>
</tr>
<tr>
<td>EQUIP</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>774.</td>
<td>0.</td>
<td>7519.</td>
</tr>
</tbody>
</table>

TOTAL ELECTRICITY 337072. KWH 14.915 KWH /SQFT-YR GROSS-AREA 14.915 KWH /SQFT-YR NET-AREA
TOTAL NATURAL-GAS 7519. THERM 0.333 THERM /SQFT-YR GROSS-AREA 0.333 THERM /SQFT-YR NET-AREA

PERCENT OF HOURS ANY SYSTEM ZONE OUTSIDE OF THROTTLING RANGE = 0.3
PERCENT OF HOURS ANY PLANT LOAD NOT SATISFIED = 0.0

NOTE: ENERGY IS APPORTIONED HOURLY TO ALL END-USE CATEGORIES.
<table>
<thead>
<tr>
<th>METERED ENERGY RESOURCE</th>
<th>RESOURCE</th>
<th>METERS</th>
<th>UNITS/YR</th>
<th>TOTAL CHARGE ($0)</th>
<th>VIRTUAL RATE ($/UNIT)</th>
<th>RATE USED</th>
<th>ALL YEAR?</th>
</tr>
</thead>
<tbody>
<tr>
<td>RGEE-SC08</td>
<td>ELECTRICITY</td>
<td>EM1</td>
<td>337072. KWH</td>
<td>49173.</td>
<td>0.1459</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>RGEG-SC03</td>
<td>NATURAL-GAS</td>
<td>FM1</td>
<td>7519. THERM</td>
<td>8023.</td>
<td>1.0670</td>
<td>YES</td>
<td></td>
</tr>
</tbody>
</table>

ENERGY COST/GROSS BLDG AREA: 2.53
ENERGY COST/NET BLDG AREA: 2.53
RESOURCE: ELECTRICITY DEMAND-INTERVAL 15 3413. BTU/KWH
BILLING-DAY: 31 RATE-LIMITATION: 0.0000
METERS: EM1
POWER-FACTOR: 0.80 EXCESS-KVAR-FRAC: 0.75 EXCESS-KVAR-CHG: 0.0000

<table>
<thead>
<tr>
<th>RESOURCE QUALIFICATIONS</th>
<th>BLOCK-CHARGES</th>
<th>DEMAND-RATCHETS</th>
<th>MIN-MON-RATCHETS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIN-ENERGY:</td>
<td>0.0 ON-PEAK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAX-ENERGY:</td>
<td>0.0 OFF-PEAK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIN-DEMAND:</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAX-DEMAND:</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QUALIFY-RATE:</td>
<td>ALL YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USE-MIN-QUAL:</td>
<td>NO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MONTH</th>
<th>METERED ENERGY KWH</th>
<th>METERED DEMAND KW</th>
<th>BILLING ENERGY KWH</th>
<th>BILLING DEMAND KW</th>
<th>ENERGY CHARGE ($)</th>
<th>DEMAND CHARGE ($)</th>
<th>ENERGY CST ADJ ($)</th>
<th>TAXES ($)</th>
<th>SURCHRG ($)</th>
<th>FIXED CHARGE ($)</th>
<th>MINIMUM CHARGE ($)</th>
<th>VIRTUAL RATE ($)</th>
<th>TOTAL CHARGE ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAN</td>
<td>24332</td>
<td>73.8</td>
<td>2360</td>
<td>711</td>
<td>0</td>
<td>0</td>
<td>0.1441</td>
<td>3506</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEB</td>
<td>25376</td>
<td>73.9</td>
<td>2485</td>
<td>711</td>
<td>0</td>
<td>0</td>
<td>0.1431</td>
<td>3632</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAR</td>
<td>29939</td>
<td>76.5</td>
<td>2959</td>
<td>737</td>
<td>0</td>
<td>0</td>
<td>0.1380</td>
<td>4132</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APR</td>
<td>26101</td>
<td>93.3</td>
<td>2586</td>
<td>899</td>
<td>0</td>
<td>0</td>
<td>0.1502</td>
<td>3920</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAY</td>
<td>27798</td>
<td>103.6</td>
<td>2778</td>
<td>998</td>
<td>0</td>
<td>0</td>
<td>0.1515</td>
<td>4211</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUN</td>
<td>32547</td>
<td>106.4</td>
<td>3240</td>
<td>1024</td>
<td>0</td>
<td>0</td>
<td>0.1444</td>
<td>4700</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUL</td>
<td>31815</td>
<td>107.7</td>
<td>3167</td>
<td>1037</td>
<td>0</td>
<td>0</td>
<td>0.1458</td>
<td>4639</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUG</td>
<td>25565</td>
<td>102.7</td>
<td>2558</td>
<td>989</td>
<td>0</td>
<td>0</td>
<td>0.1558</td>
<td>3982</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEP</td>
<td>29116</td>
<td>107.8</td>
<td>2880</td>
<td>1038</td>
<td>0</td>
<td>0</td>
<td>0.1495</td>
<td>4353</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCT</td>
<td>29208</td>
<td>95.7</td>
<td>2919</td>
<td>921</td>
<td>0</td>
<td>0</td>
<td>0.1464</td>
<td>4276</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOV</td>
<td>27774</td>
<td>77.7</td>
<td>2738</td>
<td>748</td>
<td>0</td>
<td>0</td>
<td>0.1412</td>
<td>3921</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEC</td>
<td>27502</td>
<td>81.0</td>
<td>2685</td>
<td>780</td>
<td>0</td>
<td>0</td>
<td>0.1418</td>
<td>3900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>337072</td>
<td>107.8</td>
<td>33355</td>
<td>10593</td>
<td>0</td>
<td>0</td>
<td>5225</td>
<td>49173</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix D
Memo regarding decision to pursue LEED certification
Minutes of Design Team Meeting No. 9

Project: Monroe Community College Building 9
Wolk Nursing Center Addition & Renovations

Project No: 06330

Date: December 7, 2006

Purpose: Design Team Progress Meeting

Location: Building 1, Board Room

Present: Dick Degus MCC
Bob Cunningham MCC
Valarie Avalone MCC
Laurel Sanger MCC Nursing Program, Chair
Frank Rinehart MCC Dean, Sciences & Health Services
Blaine Grindle MCC Facilities
Kevin Walton MCC Facilities
Reinhard Gsellmeier MC DES - Project Manager
Scott Page Scott Blackwell Page
Ron Mead M/E Engineering, PC
Jay Judson SWBR Architects
Rohit Agrawal SWBR Architects
Randy Sickler SWBR Architects

Discussion:

1. SWBR handed out updated first and second floor plans for discussion, along with exterior elevation and entrance section options for discussion. Plan issues discussed included the following:
 - Elevator size and location – an elevator with a cab large enough for a bed will only cost a few thousand dollars more than a smaller one. The issue here is more the size (footprint) that the elevator will occupy. Both sizes being considered will accommodate a stretcher/gurney.
 - 2nd floor Nursing Lounge is rather long, as a result of needing to access it from the corridor, and a desire to make the bed lab a regular, rectangular space.
 - One option to “decompress” the west side is to relocate the elevator to the east side of the exit stair, in a common vertical circulation area.
 - Frank raised the issue of how much the Nursing Lounge will be used; noting that many of the Nursing students also have jobs, and are of a more transient nature. However, it is generally recognized that the Campus, as a whole, is still short on student lounge area.
 - The lounge location in the current design is desirable as it is an appropriate space to locate in the southwest corner, where a large corner window has been indicated in many of the exterior studies that have been presented. This feature is considered by many to be important to the appearance of the building, and should be kept if possible.
 - Several options to rearrange the teaching spaces were discussed, but there was consensus that the current plan arrangements work well other than the Lounge being oversized, and Nursing program storage needing about 200 NSF more area.
 - One option would be to locate some Nursing storage in the area currently indicated as Lounge, another would be to move the elevator and put the storage there.
 - SWBR will continue to study ways to make the west side work more efficiently and recover the programmed storage space.
2. Elevations and building section options were also reviewed. Discussion included:
 - Sun shading elements to reduce glare and solar heat gain at windows are being
 indicated at the south windows and some of the west windows. There were concerns
 expressed regarding the aesthetic of these elements, not all who have seen them like
 the appearance. Overhangs are another effective way to accomplish this. These
 features have more to do with helping with LEED certification than as added aesthetic
 elements – where they provide no function use, they will not be used. M/E
 Engineering will be using computer energy modeling to study the efficiency of the
 building envelope and the effectiveness of shading features.
 - As there is no existing metal panel detailing on the west side of campus, it was
 recommended that this material not be used on the west, with the possible exception of
 a canopy over the west entrance. Brick and concrete are the predominant materials,
 other than glass.
 - At the west side, it is considered desirable to provide a material break between the
 south side of the Wolk addition and the blank brick wall of Building 9. Metal panel
 may be used here, or another material, that might tie together visually to the enclosure
 of the rooftop air handling unit and service corridor that will be constructed on the west
 end of the single-story roof of Building 9.

3. Site plan review: A topographic survey has been completed by Parrone, and John discussed
 the sidewalk layout to the west entrance. Currently he is looking at a walkway that is
 perpendicular to the entrance, with slightly less than 5\% slope to avoid being considered a
 ramp. A trench drain would be placed at the bottom of the slope, about eight feet west of
 the front door. Twelve or more feet of separation would be desirable, but cannot be
 accomplished within the limitations of the existing parking lot and Building 9 elevations.
 Diagonal walks were discussed as an option, and should be considered further. Input will
 be sought from MCC Facilities maintenance personnel to consider in the design.

4. SEQR process update: The four letters declaring the County’s intention to be lead agent are
 in review in the County system, going through the Law Department and County Executive
 offices. Reinhard is monitoring the status of the letters.

5. Geotechnical Report: Foundation Design has completed their soil borings work and is
 assembling a Geotechnical Report with recommendations that will be available in the near
 future.

6. LEED Certification: A LEED Workshop was held on Tuesday, December 5, 2006 at MCC.
 Potential LEED credits were reviewed in advance by M/E Engineering, Blaine, and SWBR
 and a “straw man” spreadsheet was prepared for the workshop by Randy. Proposed and
 other possible credits were reviewed by the group present, and it was felt that basic LEED
 Certification would be fairly easy to obtain if the decision were made to pursue it, and a
 Silver-level rating could be obtained with some further cost ($100,000 +/-) and effort. The
 County and the College have both expressed commitment to the LEED process and Green
 building practices, and have directed the Consultant Team to proceed with the intent of
 achieving a LEED-NC (New Construction) Silver rating. SWBR will register the project
 with the U.S. Green Building Council, who created and administer the ratings.

7. Master Planning work: Scott has been working with MCC to develop a couple of
 alternative growth and usage plans. These will need to mesh with planned facility and
 systems improvements to develop rational project scopes and associated budgets. Existing
 programs in Building 9 and the ATEC facility are being considered for inclusion in the
 Building 9 Master Plan or possible relocation.
8. Design Team representatives will need to meet with President Flynn in early or mid-January to review the exterior appearance of the design, at least two weeks before the February 4, 2007 meeting of the Board of Directors, so that any suggested changes can be incorporated before presentation to the Board.

9. The next regularly scheduled Design Team meeting will be on Thursday, December 21, 2006, 8:00 AM – 10:00 AM, in the Board Lounge, 1-321.

The foregoing constitutes our understanding of matters discussed and conclusions reached. If there are any errors or omissions in the basic discussion, please notify the Architect in writing.

By: Randal R. Sickler, AIA

Distribution: Dave Schottler – MCC Facilities
Brian Danker – M/E Engineering
Bob Elliott - Lu Engineering
Sue Hilton - Lu Engineering
Tim Seeler - Seeler Engineering
Betsy Casey - Design Services
Jim Baker - Foundation Design

RRS/rs
Appendix E
Tabular summary of first costs and estimated savings
LEED-NC 2.2 Cost Matrix

Proposed Goal: Silver Level Certification (33 to 38 points)

MCC Wolk Center

LEED-Silver Certified at 35 points

Proposed Goal: Silver Level Certification (33 to 38 points)

SWBR Project No. 07295

August 4, 2009

LEED Cost Matrix

<table>
<thead>
<tr>
<th>Sustainable Sites (34 possible points)</th>
<th>yes</th>
<th>no</th>
<th>Design</th>
<th>Construction</th>
<th>Cycle Savings</th>
<th>LEED Documentation</th>
<th>COMMITMENT</th>
<th>ADD ALT.?</th>
</tr>
</thead>
<tbody>
<tr>
<td>WE Credit 1.1 Water Efficient Landscaping</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A subreddit to the LEED standard practices required for New York State to manage erosion and runoff during construction.</td>
<td>A LEED-certified program for the existing campus site allows for this credit to be met without new construction.</td>
<td>No</td>
</tr>
<tr>
<td>SS Credit 2.1 Brownfield Redevelopment</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A LEED-certified program for the existing campus site allows for this credit to be met without new construction.</td>
<td>A LEED-certified program for the existing campus site allows for this credit to be met without new construction.</td>
<td>No</td>
</tr>
<tr>
<td>SS Credit 4.1 Alternative Transportation, Public Transportation Access</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A LEED-certified program for the existing campus site allows for this credit to be met without new construction.</td>
<td>A LEED-certified program for the existing campus site allows for this credit to be met without new construction.</td>
<td>No</td>
</tr>
<tr>
<td>SS Credit 4.2 Alternative Transportation, Bicycle Storage & Changing Rooms</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A LEED-certified program for the existing campus site allows for this credit to be met without new construction.</td>
<td>A LEED-certified program for the existing campus site allows for this credit to be met without new construction.</td>
<td>No</td>
</tr>
<tr>
<td>SS Credit 6.1 Stormwater Design, Quantity Control</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A LEED-certified program for the existing campus site allows for this credit to be met without new construction.</td>
<td>A LEED-certified program for the existing campus site allows for this credit to be met without new construction.</td>
<td>No</td>
</tr>
<tr>
<td>SS Credit 6.2 Stormwater Design, Quality Control</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A LEED-certified program for the existing campus site allows for this credit to be met without new construction.</td>
<td>A LEED-certified program for the existing campus site allows for this credit to be met without new construction.</td>
<td>No</td>
</tr>
<tr>
<td>SS Credit 7.1 Heat Island Effect, Non-Roof</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A LEED-certified program for the existing campus site allows for this credit to be met without new construction.</td>
<td>A LEED-certified program for the existing campus site allows for this credit to be met without new construction.</td>
<td>No</td>
</tr>
<tr>
<td>SS Credit 7.2 Heat Island Effect, Roofs</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A LEED-certified program for the existing campus site allows for this credit to be met without new construction.</td>
<td>A LEED-certified program for the existing campus site allows for this credit to be met without new construction.</td>
<td>No</td>
</tr>
<tr>
<td>SS Credit 8.1 Light Pollution Reduction</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A LEED-certified program for the existing campus site allows for this credit to be met without new construction.</td>
<td>A LEED-certified program for the existing campus site allows for this credit to be met without new construction.</td>
<td>No</td>
</tr>
<tr>
<td>Subtotal Sustainable Sites</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A LEED-certified program for the existing campus site allows for this credit to be met without new construction.</td>
<td>A LEED-certified program for the existing campus site allows for this credit to be met without new construction.</td>
<td>No</td>
</tr>
</tbody>
</table>

Subtotal Water Efficiency

WE Credit 1.1 Water Efficient Landscaping, Reduce by 40%

WE Credit 1.2 Water Efficient Landscaping, No Potable Use or No Irrigation

WE Credit 3.1 Water Use Reduction, 20% Reduction

WE Credit 3.2 Water Use Reduction, 30% Reduction

<table>
<thead>
<tr>
<th>Water Efficiency (9 possible points)</th>
<th>yes</th>
<th>no</th>
<th>Design</th>
<th>Construction</th>
<th>ADD ALT.?</th>
</tr>
</thead>
<tbody>
<tr>
<td>WE Credit 1.1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>WE Credit 1.2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>WE Credit 3.1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>WE Credit 3.2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
</tbody>
</table>

Additional Notes

- **MCC Wolk Center has installed a white roof system, or "Cool Roof," to lessen the detrimental environmental impacts of "Urban Heat Island Effect" caused by dark roof surfaces. A "SureKote" TPO roof, by Carlisle Synetics, Inc., was used in the project.**
- **The project scope had little site opportunity in it to address this credit.**

LEED Cost Matrix_2009_08-28.xls 1 of 4
Energy & Atmosphere (17 possible points)

<table>
<thead>
<tr>
<th>COMMITMENT</th>
<th>ADDITIONAL COST</th>
<th>INTERVENTIONS / LIFE CYCLE SAVINGS</th>
<th>COMMENTS</th>
<th>ADD ALT?</th>
</tr>
</thead>
<tbody>
<tr>
<td>EA Prereq 1</td>
<td>Fundamental Commissioning of the Building Energy Systems</td>
<td>REQ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EA Prereq 2</td>
<td>Minimum Energy Performance</td>
<td>REQ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EA Prereq 3</td>
<td>Fundamental Refrigerant Management</td>
<td>REQ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EA Credit 2</td>
<td>On-Site Renewable Energy</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EA Credit 3</td>
<td>Enhanced Refrigerant Management</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EA Credit 4</td>
<td>Enhanced Refrigerant Management</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EA Credit 5</td>
<td>Measurement & Verification</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EA Credit 6</td>
<td>Green Power</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Materials & Resources (13 possible points)

<table>
<thead>
<tr>
<th>COMMITMENT</th>
<th>ADDITIONAL COST</th>
<th>INTERVENTIONS / LIFE CYCLE SAVINGS</th>
<th>COMMENTS</th>
<th>ADD ALT?</th>
</tr>
</thead>
<tbody>
<tr>
<td>MR Prereq 1</td>
<td>Storage & Collection of Recyclables</td>
<td>REQ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MR Credit 1</td>
<td>Construction Waste Management, Veneer 50% from Reclaimed</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MR Credit 2</td>
<td>Construction Waste Management, Veneer 50% from Reclaimed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MR Credit 3</td>
<td>Recycled Content, 10% (post-consumer)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MR Credit 4</td>
<td>Recycled Content, 15%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MR Credit 5</td>
<td>Recycled Content, 10%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MR Credit 6</td>
<td>Recycled Materials, 15%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MR Credit 7</td>
<td>Certified Wood</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assumptions

- **Construction Waste Management, Divert**
 - The prerequisite requires that the team establish the minimum level of energy efficiency for the proposed building systems.

- **Building Reuse, Maintain 50% of Interior**
 - The prerequisite requires that the team establish the minimum level of energy efficiency for the proposed building systems.

- **Storage & Collection of Recyclables**
 - The necessity to provide for disposal of various materials, per the Waste Management Plan provided by the contractor.

- **Certified Wood**
 - The Wolk Center may have met this credit criteria. Though a specific return on investment at the Wolk Center cannot be determined, commissioned verifies that a building is performing to the level at which it was designed. Even basic commissioning can provide significant benefits. In the long term, commissioning has been shown to have very strong improvements in system performance and reduced operating costs. Case studies have shown that commissioning frequently pays for itself in less than a 5-year period.

Estimated Costs

| LEED Cost Matrix | 2009_08-28.xls 2 of 4 | LEED Documentation fees, $1500; MCC did not have in place a recycling program at this campus prior to the bid and no other LEED projects, which all require recycling as a prerequisite to certification. The recycling program and the associated costs were provided by MCC and consideration given to the cost over the series of campus projects.
MR Credit 1	Storage & Collection of Recyclables				
MR Credit 4	Recycled Content, 10% (post-consumer)				
MR Credit 5	Recycled Content, 10%				
MR Credit 7	Certified Wood				

Benefits

- Payback period: 3.2 years (if energy costs remain unknown.)
- **Environmental Class**
 - The Marshfield College, which provides a demonstrative awareness and this awareness benefits, cultural outcomes, and the costs and environmental impacts related to transportation.

Incentives

- **NYSERDA Sensors to reduce HVAC use, and others.**
 - Though a specific return on investment at the Wolk Center cannot be determined, commissioned verifies that a building is performing to the level at which it was designed. Even basic commissioning can provide significant benefits. In the long term, commissioning has been shown to have very strong improvements in system performance and reduced operating costs. Case studies have shown that commissioning frequently pays for itself in less than a 5-year period.

Commitments

- **Minimum Energy Performance**
 - The prerequisite requires that the team establish the minimum level of energy efficiency for the proposed building systems.

- **Building Reuse, Maintain 50% of Interior**
 - The prerequisite requires that the team establish the minimum level of energy efficiency for the proposed building systems.

Materials

- **Processed & Manufactured Regional**
 - The 16.3% of the products used in this project were manufactured and harvested within 500 miles of the site. This supports regional businesses and reduces the costs and environmental impacts related to transportation.

- **Recycled Content, 10%**
 - Tracking of information not provided by manufacturer in the initial order/ inquiry.

Prerequisites

- **Refrigerant Management**
 - The 14.8% of the total materials cost for the project was comprised of recycled content. This increase demand for building products that incorporate recycled content materials, reducing the impacts resulting from extraction and processing of virgin materials.

- **Construction Waste Management, Veneer 50% from Reclaimed**
 - Tracking of information not provided by manufacturer in the initial order/ inquiry.

- **Recycled Content, 10% (post-consumer)**
 - Tracking of information not provided by manufacturer in the initial order/ inquiry.

Estimation

- **Certified Wood**
 - The Wolk Center has a recycling program that allows its occupants to sort paper, cardboard, glass, and metal from waste materials, keeping recyclable products out of the waste stream. The 16.3% of the products used in this project were manufactured and harvested within 500 miles of the site. This supports regional businesses and reduces the costs and environmental impacts related to transportation.

Implementation

- **Environmental Class**
 - The 16.3% of the products used in this project were manufactured and harvested within 500 miles of the site. This supports regional businesses and reduces the costs and environmental impacts related to transportation.
<table>
<thead>
<tr>
<th>EQ Credit</th>
<th>Description</th>
<th>LEED Documentation fees</th>
<th>ADDITIONAL COST</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQ Prereq 2</td>
<td>Environmental Tobacco Smoke (ETS) Control</td>
<td>$200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ Credit 1</td>
<td>Outdoor Air Delivery Monitoring</td>
<td>$200</td>
<td></td>
<td>Improved Air Quality (IAQ) performance to reduce indoor air quality in buildings and contribute to the comfort and well-being of the occupants.</td>
</tr>
<tr>
<td>EQ Credit 2</td>
<td>Increased Ventilation</td>
<td>$200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ Credit 3.1</td>
<td>Construction IAQ Management Plan, During Construction</td>
<td>$200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ Credit 4.1</td>
<td>Low-Emitting Materials, Adhesives & Sealants</td>
<td>$200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ Credit 4.2</td>
<td>Low-Emitting Materials, Paints & Coatings</td>
<td>$200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ Credit 4.3</td>
<td>Low-Emitting Materials, Carpets, Wood & Agri-based Products</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ Credit 4.4</td>
<td>Low-Emitting Materials, Composite Wood & Agri-based Products</td>
<td>$200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ Credit 5</td>
<td>Indoor Chemical & Pollutant Source Control</td>
<td>$200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ Credit 6.1</td>
<td>Controllability of Systems, Lighting</td>
<td>$200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ Credit 6.2</td>
<td>Controllability of Systems, Thermal Comfort</td>
<td>$200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ Credit 7.1</td>
<td>Thermal Comfort, Design</td>
<td>$200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ Credit 7.2</td>
<td>Thermal Comfort, Verification</td>
<td>$200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ Credit 8.1</td>
<td>Daylight & Views, Window over 75% of Spaces</td>
<td>$200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ Credit 8.2</td>
<td>Daylight & Views, Daylighting for 50% of Spaces</td>
<td>$200</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Indoor Environmental Quality (15 possible points)

<table>
<thead>
<tr>
<th>COMMITMENT</th>
<th>LEED Cost Matrix</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQ Prereq 1</td>
<td>Minimum IAQ Performance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ Credit 3</td>
<td>Low-Emitting Materials, Adhesives & Sealants</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ Credit 4</td>
<td>Low-Emitting Materials, Paints & Coatings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ Credit 5</td>
<td>Low-Emitting Materials, Carpets, Wood & Agri-based Products</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ Credit 6</td>
<td>Low-Emitting Materials, Composite Wood & Agri-based Products</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ Credit 7</td>
<td>Indoor Chemical & Pollutant Source Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ Credit 8</td>
<td>Controllability of Systems, Lighting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ Credit 9</td>
<td>Controllability of Systems, Thermal Comfort</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ Credit 10</td>
<td>Thermal Comfort, Design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ Credit 11</td>
<td>Thermal Comfort, Verification</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ Credit 12</td>
<td>Daylight & Views, Window over 75% of Spaces</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ Credit 13</td>
<td>Daylight & Views, Daylighting for 50% of Spaces</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Innovation & Design Process (5 possible points)

<table>
<thead>
<tr>
<th>ID Credit</th>
<th>Description</th>
<th>LEED Documentation Fees</th>
<th>MCC Response</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID Credit 1.1</td>
<td>Innovation in Design: Educational Opportunities</td>
<td>$3500</td>
<td>MCC addressed costs related to signage and website development as part of their broader campus initiative.</td>
<td>The Wolk Center has provided public educational display regarding the sustainable design of the Wolk Center and a companion, web-based educational display. The College offers guided tours and has developed a case study document as a series of educational tools about sustainable design.</td>
</tr>
<tr>
<td>ID Credit 1.2</td>
<td>Innovation in Design: Building as a Teaching Tool</td>
<td>$1200</td>
<td>MCC HVAC Design curriculum was tailored to include the building as a teaching tool; MCC/SWBR collaboration in Curriculum Development</td>
<td>None</td>
</tr>
<tr>
<td>ID Credit 1.3</td>
<td>Innovation in Design: TBD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID Credit 1.4</td>
<td>Innovation in Design: TBD</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LEED Cost Matrix

LEED Design Fees
- **Total LEED Design Fees:** $2,925
- **Design Fees as % of Project Cost:** 0.84%

Construction Costs
- **Total Construction Costs:** $5,624,000
- **Design Fees as % of Project Cost:** 1.10%

Estimated Furniture, Fit-Out and Equipment Costs
- $398,000

LEED Documentation Fees
- $62,500

Total Project Cost
- **Final Cost:** $7,408,000
- **LEED Design Fees as % of Project Cost:** 0.94%

Additional Design Fees

Additional Construction Costs

Contractor execution of Waste Mgt. Plan (unknown)
- $600

Fundamental Commissioning
- 21,000

Energy Efficiency Measures (All)
- 53,067

FSC Wood Core Doors
- 44

Outdoor Air Delivery Monitoring
- 6,000

Air Quality Flush-out
- 670

Total Additional Cost for LEED
- 128,040

Annual Energy Savings (From Energy Analysis)
- 116

Payback Period for All Sustainable Investments (in years)
- 11.0

Final Cost LEED Design Fees as % of Project Cost
- 0.94%

Final Cost LEED Construction Costs as % of Project Cost
- 1.10%
Indoor Environmental Quality Survey

1. Agency: Monroe Community College
 Building: Bldg 9, Wolk Addition Room #: Occupant Name:

2. Approximately how many hours per week do you work? Hours

3. Approximately how many hours per week do you spend in the office? Hours

4. Approximately how many years have you been working in the building? Years

5. Please indicate your primary work space.
 - Work throughout building.
 - Enclosed office
 - Cube with tall wall (> 6 feet)
 - Cube with short wall (< 6 feet)
 - Other

6. Were any of the following items regularly used at your workstation during the past year?
 - Portable Fan
 - Portable air filter or cleaner
 - Portable space heater
 - Portable humidifier

7. At any time during the past year have you noticed evidence of new or continued water leaks from the ceiling, floors, walls, or pipes near your workstation?
 - Yes
 - No

8. During the past year have any of the following changes taken place within 15 feet of your current workstation?
 - New carpeting
 - New furniture (chairs, desks)
 - New equipment (computer)
 - Wall construction
 - Walls painted
 - Cubes rearranged

9. Do you have any concerns with the indoor air quality that you would like to discuss?
 - Yes (continue survey)
 - No (please stop survey and return form)
10. Please check the category below that best describes your current work area
(Note: If you or your coworkers have modified your work area through the use of fans, space heaters, humidifiers, air cleaners or other, please answer based on how you would describe the work area without the modification.)

<table>
<thead>
<tr>
<th>During the last YEAR: how often was...</th>
<th>Never</th>
<th>Monthly</th>
<th>Weekly</th>
<th>Daily</th>
<th>Always</th>
</tr>
</thead>
<tbody>
<tr>
<td>the temp too hot</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the temp too cold</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the air circulation poor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the air dusty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the air too humid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the air too dry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>there disturbing noises</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>During the last YEAR: Please indicate whether there is a seasonal correlation with the following conditions:</th>
<th>Not Related</th>
<th>Spring</th>
<th>Summer</th>
<th>Fall</th>
<th>Winter</th>
</tr>
</thead>
<tbody>
<tr>
<td>the temp too hot</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the temp too cold</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the air circulation poor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the air dusty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the air too humid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the air too dry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>disturbing noises</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11. Please check the category below that best describes the frequency of odors in your work area.

<table>
<thead>
<tr>
<th>During the last year how often, if at all, did you notice any of the following odors in your work area?</th>
<th>Never</th>
<th>Monthly</th>
<th>Weekly</th>
<th>Daily</th>
<th>Always</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tobacco smoke</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Musty, moldy damp basement smell</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Food smells</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paint and/or construction odors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diesel or other exhaust odors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photo copy machine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical odors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other (describe)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
12. Are you experiencing any physical symptoms that you think may be attributed to your work environment?

☐ Yes ☐ No

If no, then please go to question 14

13. Please describe the physical symptoms:

Symptom #1 ____________________
Symptom #2 ____________________
Symptom #3 ____________________

13-a. In which season(s) are you bothered more by the symptoms you reported in question 12?

☐ Winter ☐ Spring
☐ Summer ☐ Fall
☐ No relation to the seasons

13-b. Do the above symptom(s) clear up within 1 hour after leaving the building?

Symptom #1 Yes ☐ No ☐
Symptom #2 ☐ ☐
Symptom #3 ☐ ☐

13-c. If no, which symptom(s) persist throughout the week?

☐ #1 ☐ #2 ☐ #3

13-d. Are you currently being treated by a health care professional for any of the above symptoms?

☐ Yes ☐ No

If no, then please go to question 14

13-e. If yes, which one(s):

☐ #1 ☐ #2 ☐ #3

14. Do you believe you are or may be allergic to any of the following?

Pollen or plants ☐
Animal dander (cat, dog) ☐
Mold ☐
Dust (house, paper) ☐
Other ____________________ ☐

Have you been tested by a physician to verify allergies?

☐ Yes ☐ No
15. Do you wear corrective lenses?
 □ No □ Contacts
 □ Glasses □ Bifocals/trifocals

16. Have you had your eyes examined within the last two years?
 □ Yes □ No

17. On the average, how many hours do you use a computer at work?
 □ 0 to 2 □ 2 to 4
 □ 4 to 6 □ 6 or more

18. The level of lighting at your work station is:
 □ Too dim □ Just right □ Too bright

19. Do you experience reflection or glare from your computer monitor?
 □ Yes □ No

20. Please indicate your primary job task:
 □ Supervisor/manager □ Support/clerical
 □ Professional/technical □ Other ______________

21. Can you offer any other comments or observations concerning your work area:

Please direct any questions regarding this survey and return the completed forms to:

Blaine Grindle
Director of Facilities
Brighton Campus
Monroe Community College
Building 21, Room 108A
Phone Number: 585-292-2804
Building Green
HVA 130

Catalog Description:

The wise utilization of our natural resources in our homes and buildings has become important to the vast majority of the population. Not only are we looking out for the environment, we’re looking out for our wallet. We hear terms like building green, sustainability, LEED, energy conservation; what do these terms mean?

This course will explore the various components of a home or building. The content will be applicable to both the HVAC professional as well as the home/building owner. Beyond the utilization of a text, faculty handouts, exploration in lab, we will tour the recently completed Louis S. and Molly B. Wolk Center for Excellence in Nursing addition to building 9 on our Brighton campus to study many of these components in operation, and review the Case Study developed for LEED Certification on that project.

Credit: 3
Total Student Contact hours: 45
Faculty Contact hours: 3
Prerequisite: None

SYLLABUS:

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Orientation, discussion on building green</td>
</tr>
<tr>
<td>2</td>
<td>Green buildings, the LEED Rating System, and Energy Management; Striving for sustainability in construction.</td>
</tr>
<tr>
<td>3</td>
<td>Building orientation, natural surroundings & ecology, and implications on the indoor environment</td>
</tr>
<tr>
<td>4</td>
<td>Types of wall insulation, ventilation</td>
</tr>
<tr>
<td>5</td>
<td>Types of windows, friend or foe. Roofing options</td>
</tr>
<tr>
<td>6</td>
<td>Selecting flooring, wall covering; sustainable design concerns</td>
</tr>
<tr>
<td>7</td>
<td>Water conservation in the building, hot water heaters, selection of faucets and fixtures</td>
</tr>
<tr>
<td>8</td>
<td>Comparing normal fuel sources; gas, oil, electric</td>
</tr>
<tr>
<td>9</td>
<td>Exploring geothermal</td>
</tr>
<tr>
<td>10</td>
<td>The future for solar and fuel cells</td>
</tr>
<tr>
<td>11</td>
<td>Lab-experiments utilizing solar and fuel cells</td>
</tr>
<tr>
<td>12</td>
<td>Renovation of existing buildings, recycling intelligently.</td>
</tr>
<tr>
<td>13</td>
<td>Utilizing RHVAC for calculating heat loss/gain</td>
</tr>
<tr>
<td>14</td>
<td>Begin final project in lab</td>
</tr>
<tr>
<td>15</td>
<td>Present final project to class</td>
</tr>
</tbody>
</table>
Issues in Energy Management and Sustainability
HVA 230

Course Description: The successful HVAC technician is not only an expert in diagnosing and servicing the environmental systems within a building, they need to be totally aware of the building itself and the implications for minimizing the impact on occupants and the environment.

The goal of this course is the familiarization of the technician with modern design considerations that engineers and architects face and that we are expected to implement. Not only will we be utilizing handouts on various building components, but we will be reviewing MCC’s LEED submissions for the recently completed Louis S. and Molly B. Wolk Center for Excellence in Nursing, remotely accessing the building electric and energy management systems, and reviewing building blueprints; all in an attempt to better understand the implications for both the building and service tech. The Wolk Center building addition will be used as a “living laboratory” and teaching tool as an example of sustainable energy management.

The final in this course will be a group presentation on what the students feel turned out well during construction versus areas they see for improvement in the future.

Credit: 3
Student Contact hours: 45
Faculty contact hours: 3
Prerequisite(s): HVA 101, 102, 103, 104, 105 or instructor permission.

SYLLABUS:

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Orientation and class expectations</td>
</tr>
<tr>
<td>17</td>
<td>Discussion on “what is building energy management”</td>
</tr>
</tbody>
</table>
18 Good design practices for commercial buildings
19 Energy management computer systems
20 Understanding Energy Mgmt. System in Wolk Center utilizing remote access.
21 Monitoring electric utilization in Wolk Center utilizing remote access.
22 Options for water conservation, heating in Wolk Center.
23 Discussion on Energy Management and Sustainable Design (LEED)
24 Familiarization with NYS building code, NYSERDA
25 Understanding the building envelope.
26 Minimizing need for heating & cooling
27 Options for heating & cooling
28 Components of building commissioning
29 Life-Cycle Cost implications of building for high performance within LEED Rating System standards versus the resultant savings in cost of operation
30 Final project presentation

Texts: Extensive faculty handouts, and “LEED Case Study for the Louis S. and Molly B. Wolk Center for Excellence in Nursing” Edited by SWBR Architects; Contributors: SWBR Architects, M/E Engineering, Parrone Engineers, SAIC Engineers, Monroe Community College